

Data and Reality

Data and Reality

William Kent

cover design: helen holder / photos: bill kent

Copyright © 1998, 2000 by William Kent

All rights reserved.
No part of this book may be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical,

photocopying, recording, or otherwise, without written
permission from the author.

ISBN: 1-58500-970-9 (softcover)
ISBN: 1-4208-9888-4 (e-book)

1stBooks – rev. 3/28/00

ABOUT DATA AND REALITY

First published over twenty years ago, this little classic
addresses timeless questions about how we as human beings
perceive and process information about the world we operate in,
and how we struggle to impose that view on our data processing
machines. The concerns at this level are the same whether we
use hierarchical, relational, or object-oriented information
structures; whether we process data via punched-card machines
or interactive graphic interfaces; whether we correspond by
paper mail or e-mail; whether we shop from paper-based
catalogs or the web. No matter what the technology, these
underlying issues have to be understood.

You can read this book for insights into the basis of
computer data processing. You can also read it for insights into
the way we perceive reality, and the constructs and tactics we use
to cope with complexity, ambiguity, incomplete information,
mismatched viewpoints, and conflicting objectives.

This new edition preserves the original content with minor
cleanup and a new preface. The format, though, has been
thoroughly modernized. That ugly typewriter font is gone! It’s
now a pleasure for the eyes as well as the mind. And it’s still as
relevant as ever.

vii

What they’ve said about Data and Reality…

An excellent, philosophical discussion of the problems
inherent in describing the real world. There is nothing really
similar to this work. I think that all data base researchers should
read this document. It might also be assigned as supplementary
reading in general graduate and undergraduate courses in data
base systems.

−Mike Senko (1978)

I expect the book to be one of the most frequently quoted
ones for the next few years. It is unique in being an almost
exhaustive, condensed rendition of the typical problems
encountered. The most striking strong point is its penetration into
major data base technology headaches… Many well chosen
examples and the lucid style make it easy to read.

−Reiner Durcholz (1978)

…highly recommended and even required reading for all DP
people…

−G.M. Nijssen (1978)

Kent has produced a rather remarkable and highly readable
short work… the most important things he has to say are
philosophical and go right to the heart of the key concepts that
must be understood if a system is to be “successful” (whatever
that may mean!)…This is a serious book but not a heavy one.
Kent writes easily and without hiding behind the semantics of
the data base specialists. The ideas are presented in a
straightforward manner with no attempt to preach.

−Datamation, March 1979

viii

This excellent study of the problems inherent in describing
the real world is unique in (1) being an almost exhaustive,
condensed rendition of the typical problems encountered, (2) not
offering an own solution as remedy for all evils, and (3)
penetrating into the mists of conceptual ambiguity… This book
is of important value to all those in the field of data bases and
information systems who are concerned with developing a
deeper understanding of this matter. It is of equal importance to
the systems analyst, to the data base designer, and to the database
system designer.

−Current Engineering Practice, July 1979

Data and Reality illustrates extensively the pitfalls of any
simplistic attempts to capture reality as data in the sense of
today’s database systems. The approach taken by the author is
one which very logically and carefully delineates the facets of
reality being represented in an information system, and also
describes the data processing models used in such systems. The
linguistic, semantic, and philosophical problems of describing
reality are comprehensively examined… The depth of discussion
of these concepts, as they impact on information systems, is not
likely to be found elsewhere.… the value of this book resides in
its critical, probing approach to the difficulties of modeling
reality in typical information systems… it is very well written
and should prove both enjoyable and enlightening to a careful
reader.

−ACM Computing Reviews, August 1980

By page eight one has been exposed to an incredible number
of philosophical ideas, all cast as concrete data-representation
problems… this is basically a book that poses problems and
exposes contradictions… A very stimulating read.

−Quantitative Sociology Newsletter, Spring 1981

ix

Kent attacks the pseudo-exactness of existing data models in
a very neat and clear (and often humorous) manner… This book
is for everyone who thinks about or works on data files and who
wants to understand the reasons for his disenchantment.

−European Journal of Operations Research, November 1981

I am using Data and Reality as research material for my

current project. It is on my desk right now.
−Joe Celko, 1998

The book is still quoted quite often and has a message even −

or especially − for today’s jaded information scientists.
−Prof. Dr. Robert Meersman, Vrije Universiteit Brussel (1998)

Your book focuses attention on many issues that are still,

embarrassingly, not being dealt with in our formalized
information systems. It provides an important reference point not
only in identifying these problems, but in pointing out origins
and the long-standing practice of simply ignoring them. When I
reopened your book… I found lots of issues that seem as fresh as
ever.

−Roger Burkhart, John Deere (1998)

A small number of computing and information management
books are of foundational nature, not oriented towards a
particular technology, methodology or tool. Data and Reality is
such a book. The concepts and approach described there are as
valid now as they were in 1978, and are still often ignored
resulting in systems that are not what we want them to be. Doing
better than that requires Data and Reality to be an essential
component of our intellectual foundation.

−Haim Kilov, Genesis Development Corporation (1999)

x

I remember my first exposure to the work of Edward Tufte.
The richness of detail that could be presented simply was almost
a physical shock. Were it not for Bill Kent I might have forgotten
that the data represented by that richness was only a
representation of reality, and not the reality itself. In a world
which reinvents the Perfect Semantic Representation Language
to End All Semantic Representation Languages every ten years
or so, it is a pleasure to have Bill’s calming influence in print in
the form of Data and Reality.

−Richard Mark Soley, Ph.D., Chairman and CEO,
Object Management Group, Inc. (1999)

xi

Contents

PREFACE TO THE SECOND EDITION..................................xv
PREFACE... xix
1 ENTITIES ...1

1.1 One Thing ..2
1.2 How Many Things Is It? ..7
1.3 Change ...10
1.4 The Murderer and the Butler..13
1.5 Categories (What Is It?) ...14
1.6 Existence..18

2 THE NATURE OF AN INFORMATION SYSTEM...............23
2.1 Organization...23
2.2 Data Description ..25
2.3 What is “In the System”?...33
2.4 Existence Tests In Information Systems37
2.5 Records and Representatives ...40

3 NAMING ..47
3.1 How Many Ways?..47
3.2 What is Being Named? ..54
3.3 Uniqueness, Scope, and Qualifiers55
3.4 Scope of Naming Conventions60
3.5 Changing Names..61
3.6 Versions..62
3.7 Names, Symbols, Representations.................................63
3.8 Why Separate Symbols and Things?63
3.9 Sameness (Equality) ..69

4 RELATIONSHIPS ..73
4.1 Degree, Domain, and Role...74
4.2 Forms of Binary Relationships75
4.3 Other Characteristics..80
4.4 Naming Conventions ...83
4.5 Relationships and Instances Are Entities85
4.6 “Computed” Relationships ..86

5 ATTRIBUTES ...89
5.1 Some Ambiguities..89
5.2 Attribute vs. Relationship ..91

xii

5.3 Are Attributes Entities? ..94
5.4 Attribute vs. Category ..95
5.5 Options...95
5.6 Conclusion ...97

6 TYPES AND CATEGORIES AND SETS99
6.1 “Type”: A Merging of Ideas ...99
6.2 Extended Concepts ..101
6.3 Sets...103

7 MODELS ..107
7.1 General Concept of Models ...107
7.2 The Conceptual Model: Sooner, or Later?108
7.3 Models of Reality vs. Models of Data111
7.4 Current Models ..113

8 THE RECORD MODEL...117
8.1 Semantic Implications..118
8.2 The Type/Instance Dichotomy121
8.3 Too Many Ways To Represent Relationships...............126
8.4 But Some Relationships Can’t Be Described128
8.5 And Some Relationships Can’t Even Be

Represented ...135
8.6 Do Records Represent Entities? Or

Relationships? ...138
8.7 Distinguishability...145
8.8 Naming Practices ...146
8.9 Records Are Useful ..154
8.10 Implicit Constraints..154

9 THE OTHER THREE POPULAR MODELS.......................155
9.1 The Relational Model ..155
9.2 Hierarchies (IMS) ..158
9.3 Networks (DBTG) ...162

10 THE MODELING OF RELATIONSHIPS..........................165
10.1 Record Based Models ..165
10.2 Binary Versus N-ary Relationships167
10.3 Irreducible Relationships ...172
10.4 Good and Bad Binaries and N-aries...........................173
10.5 Which Relationships Are “In the System”?182
10.6 Existence Lists ...188

11 ELEMENTARY CONCEPTS: ANOTHER MODEL?191

xiii

11.1 System Organization ..192
11.2 Primary Model Elements ...192
11.3 Secondary Elements: A Vernacular197
11.4 The Name of the Model ...205
11.5 About Entities...205
11.6 About Symbols...207
11.7 The Symbol Stream and the Processor.......................207
11.8 About Relationships ...209
11.9 About Attributes ...211
11.10 Descriptions: Data About Data211
11.11 Implementations...212
11.12 Comparison With Other Models214

12 PHILOSOPHY ..217
12.1 Reality and Tools ...217
12.2 Points of View..219
12.3 A View of Reality...220

BIBLIOGRAPHY ..231
DETAILED CONTENTS...235

xiv

xv

Preface to the Second Edition

espite critical acclaim, outside of a small circle of
enthusiastic readers this book has been a sleeper for
over twenty years. Publishers have recently offered to

market and distribute it with more vigor if I would provide a new
revised edition, but I’ve resisted. Laziness might be seen as the
excuse, but I’m beginning to realize there’s a better reason.

A new revised edition would miss the point of the book.
Many texts and reference works are available to keep you on the
leading edge of data processing technology. That’s not what this
book is about. This book addresses timeless questions about how
we as human beings perceive and process information about the
world we operate in, and how we struggle to impose that view on
our data processing machines. The concerns at this level are the
same whether we use hierarchical, relational, or object-oriented
information structures; whether we process data via punched-
card machines or interactive graphic interfaces; whether we
correspond by paper mail or e-mail; whether we shop from
paper-based catalogs or the web. No matter what the technology,
these underlying issues have to be understood. Failure to
address these issues imperils the success of your application
regardless of the tools you are using.

That’s not to say the technical matrix of the book is obsolete
or antiquated. The data record is still a fundamental component
of the way we organize computer information. Sections of the
book exploring new models including behavioral elements are
precursors of object orientation.

The scope of the book extends beyond computer technology.
The questions aren’t so much about how we process data as
about how we perceive reality, about the constructs and tactics
we use to cope with complexity, ambiguity, incomplete
information, mismatched viewpoints, and conflicting objectives.

You can read the book for those reasons, or for other reasons
as well. A few years back, almost twenty years after the book was
published, I began to notice that the book is also about

D

xvi

something else, something far more personal. The scope of the
book doesn’t only extend beyond computer data processing into
the realm of how we perceive the world. It also extends into our
inner domain. I’ve come to recognize that it touches on issues in
my own inner life that I, like most of us to some degree or other,
have been grappling with for decades.

Consider the key topics: existence, identity, attributes,
relationships, behavior, and modeling.

Existence: Is cogito ergo sum sufficient? To what extent am I
really present and engaged in the process of life around me?
How real are the physical things I experience? To what extent do
I exist in some spiritual realm independent of the physical
context?

Identity: The old “Who am I?” bit. What is the true nature of
the kind of person I am? What sorts of needs, goals, outlooks
define who I really am?

Attributes: What kind of person am I? What are my values,
my assets, my limitations?

Relationships: This is the core of it all. What is the quality of
my interaction with parents, lovers, spouses, children, siblings,
friends, colleagues, and other acquaintances? What are my
connections with things material, social, spiritual, and
otherwise? What are my needs here? What are the issues and
problems? How can they be improved?

Behavior: What should I plan to do in various situations?
How? What might be the consequences, both intended and
otherwise? What contingencies need to be anticipated?

Modeling: How accurate and useful are the constructs I use
to explain all these things? How effective are these kinds of
explanations in helping me change what needs to be changed?

This book certainly shouldn’t be classified in the social
sciences, but it is remarkable to observe how technology issues
can resonate as metaphors for our inner lives. This perspective
seems to explain why I’ve engaged so intimately with these
ideas, why I’ve argued so passionately about them at standards
committee meetings and in the hallways at conferences.

I repeat the invitation, made in the book’s original preface,
to discover for yourself what you might think the book is about.

xvii

It just might be about you. But if that’s too much pop psychology
for your comfort, if that’s too invasive of your personal space,
then just read it for its insights into data processing and reality.

xviii

xix

Preface

A message to mapmakers: highways are not painted

red, rivers don’t have county lines running down the
middle, and you can’t see contour lines on a mountain.

or some time now my work has concerned the
representation of information in computers. The work has
involved such things as file organizations, indexes,

hierarchical structures, network structures, relational models, and
so on. After a while it dawned on me that these are all just maps,
being poor artificial approximations of some real underlying
terrain.

These structures give us useful ways to deal with
information, but they don’t always fit naturally, and sometimes
not at all. Like different kinds of maps, each kind of structure has
its strengths and weaknesses, serving different purposes, and
appealing to different people in different situations. Data
structures are artificial formalisms. They differ from information
in the same sense that grammars don’t describe the language we
really use, and formal logical systems don’t describe the way we
think. “The map is not the territory” [Hayakawa].

What is the territory really like? How can I describe it to
you? Any description I give you is just another map. But we do
need some language (and I mean natural language) in order to
discuss this subject, and to articulate concepts. Such constructs
as “entities”, “categories”, “names”, “relationships”, and
“attributes” seem to be useful. They give us at least one way to
organize our perceptions and discussions of information. In a
sense, such terms represent the basis of my “data structure”, or
“model”, for perceiving real information. Later chapters discuss
these constructs and their central characteristics ⎯ especially the
difficulties involved in trying to define or apply them precisely.

Along the way, we implicitly suggest a hypothesis (by sheer
weight of examples, rather than any kind of proof ⎯ such a
hypothesis is beyond proof): there is probably no adequate

F

xx

formal modeling system. Information in its “real” essence is
probably too amorphous, too ambiguous, too subjective, too
slippery and elusive, to ever be pinned down precisely by the
objective and deterministic processes embodied in a computer.
(At least in the conventional uses of computers as we see them
today; future developments in artificial intelligence may endow
these machines with more of our capacity to cope.) This follows
a path pointed out by Zemanek, connecting data processing with
certain philosophical observations about the real world,
especially the aspects of human judgment on which semantics
ultimately depend ([Zemanek 72]).

In spite of such difficulties (and because I see no
alternative), we also begin to explore the extent and manner in
which such constructs can and have been incorporated into
various data models. We are looking at real information, as it
occurs in the interactions among people, but always with a view
toward modeling that information in a computer based system.
The questions are these: What is a useful way to perceive
information for that purpose? What constructs are useful for
organizing the way we think about information? Might those
same constructs be employed in a computer based model of the
information? How successfully are they reflected in current
modeling systems? How badly oversimplified is the view of
information in currently used data models? Are there limits to the
effectiveness of any system of constructs for modeling
information?

In spite of my conjecture about the inherent limits of formal
modeling, we do need models in order to go about our business
of processing information. So, undaunted, I have assimilated
some of my own ideas about a “good” modeling system, and
these appear toward the end.

Keep in mind that I am not talking about “information” in a
very broad sense. I am not talking about very ambitious
information systems. We are not in the domain of artificial
intelligence, where the effort is to match the intellectual
capabilities of the human mind (reasoning, inference, value
judgments, etc.). We are not even trying to process prose text; we
are not attempting to understand natural language, analyze

xxi

grammar, or retrieve information from documents. We are
primarily concerned with that kind of information which is
managed in most current files and databases. We are looking at
information that occurs in large quantities, is permanently
maintained, and has some simplistic structure and format to it.
Examples include personnel files, bank records, and inventory
records.

Even this modest bit of territory offers ample opportunity for
misunderstanding the semantics of the information being
represented.

Within these bounds, we focus on describing the information
content of some system. The system involved might be one or
more files, a database, a system catalog, a data dictionary, or
perhaps something else. We are limiting ourselves to the
information content of such systems, excluding such concerns
as:

• Real implementations, representation techniques,

performance.
• Manipulation and use of the data.
• Work flow, transactions, scheduling, message handling.
• Integrity, recovery, security.

A caution to the lay reader in search of a tutorial: this book is

not about data processing as it is. As obvious as these concepts
may seem, they are not reflected in, or are just dimly understood
in, the current state of data processing systems. “We do not, it
seems, have a very clear and commonly agreed upon set of
notions about data ⎯ either what they are, how they should be
fed and cared for, or their relation to the design of programming
languages and operating systems. This paper sketches a theory of
data which may serve to clarify these questions. It is based on a
number of old ideas and may, as a result, seem obvious. Be that
as it may, some of these old ideas are not common currency in
our field, either separately or in combination; it is hoped that
rehashing them in a somewhat new form may prove to be at least
suggestive” [Mealy]. That opening paragraph of a now classic
paper, some ten years old, is still distressingly apt today.

xxii

There is a wonderful irony at work here. I may be trying to
overcome misconceptions which people outside the computer
business don’t have in the first place. Many readers will find
little new in what I say about the nature of our perceptions of
reality. Such readers may well react with “So what’s new?” To
them, my point is that the computing community has largely lost
sight of such truisms. Their relevance to the computing
disciplines needs to be re-established.

People in the data processing community have gotten used to
viewing things in a highly simplistic way, dictated by the kind of
tools they have at their disposal. And this may suggest another
wonderful irony. People are awed by the sophistication and
complexity of computers, and tend to assume that such things are
beyond their comprehension. But that view is entirely
backwards! The thing that makes computers so hard to deal with
is not their complexity, but their utter simplicity. The first thing
that ought to be explained to the general public is that a
computer possesses incredibly little ordinary intelligence. The
real mystique behind computers is how anybody can manage to
get such elaborate behavior out of such a limited set of basic
capabilities. The art of computer programming is somewhat like
the art of getting an imbecile to play bridge or to fill out his tax
returns by himself. It can be done, provided you know how to
exploit the imbecile’s limited talents, and are willing to have
enormous patience with his inability to make the most trivial
common sense decisions on his own. Imagine, for example, that
he only understood grammatically perfect sentences, and
couldn’t make the slightest allowance for colloquialisms, or for
the normal way people restart sentences in mid-speech, or for the
trivial typographical errors which we correct so automatically
that we don’t even see them. The first step toward understanding
computers is an appreciation of their simplicity, not their
complexity.

Another thought, though: I may be going off in the wrong
direction by focusing so much concern on computers and
computer thinking. Many of the concerns about the semantics of
data seem relevant to any record keeping facility, whether
computerized or not. I wonder why the problems appear to be

xxiii

aggravated in the environment of a computerized database. Is it
sheer magnitude? Perhaps there is just a larger mass of people
than before who need to achieve a common understanding of
what the data means. Or is it the lost human element? Maybe all
those conversations with secretaries and clerks, about where
things are and what they mean, are more essential to the system
than we’ve realized. Or is there some other explanation?

The flow of the book generally alternates between two
domains, the real world and computers. Chapter 1 is in the world
of real information, exploring some enigmas in our concepts of
“entities”. Chapter 2 briefly visits the realm of computers,
dealing with some general characteristics of formally structured
information systems. This gives us a general idea of the impact
the two domains have on each other. Chapters 3 through 6 then
address other aspects of real information. Chapters 7 through 11,
dealing with data processing models, bring us back to the
computer. We top it all off with a smattering of philosophical
observations in Chapter 12.

This has been an approximate characterization⎯one
view⎯of what the rest of the book contains. Please read on to
discover what you might think the book is about.

* * * *

I want to thank the people who took the time to comment on

(and often contribute to) earlier versions of this material,
including Marilyn Bohl, Ted Codd, Chris Date, Bob Engles, Bob
Griffith, Roger Holliday, Lucy Lee, Len Levy, Bill McGee, Paula
Newman, and Rich Seidner. George Kent, of the Political
Science Dept. at the University of Hawaii, provided a valuable
perspective from a vantage point outside of the computing
profession. Karen Takle Quinn, our head librarian, was
immensely helpful in tracking down many references. I thank
Willem Dijkhuis of North Holland for his substantial
encouragement in the publication of this book.

And very special thanks go to my wife, Barbara, who helped
make the book more readable, and who coped and sacrificed
more than anyone else for this book.

xxiv

1

1 Entities

“Entities are a state of mind. No two people agree
on what the real world view is.” [Metaxides]

n information system (e.g., database) is a model of a
small, finite subset of the real world. (More or less ⎯

we’ll come back to that later.) We expect certain
correspondences between constructs inside the information
system and in the real world. We expect to have one record in the
employee file for each person employed by the company. If an
employee works in a certain department, we expect to find that
department’s number in that employee’s record.

So, one of the first concepts we have is a correspondence
between things inside the information system and things in the
real world. Ideally, this would be a one-to-one correspondence,
i.e., we could identify a single construct in the information
system which represented a single thing in the real world.

Even these simple expectations run into trouble. In the first
place, it’s not so easy to pin down what construct in the
information system will do the representing. It might be a record
(whatever that means), or a part of one, or several of them, or a
catalog entry, or a subject in a data dictionary, or For now
let’s just call that thing a representative, and come back to that
topic later. Let’s explore instead how well we really understand
what it is that we want represented.

As a schoolteacher might say, before we start writing data
descriptions let’s pause a minute and get our thoughts in order.
Before we go charging off to design or use a data structure, let’s
think about the information we want to represent. Do we have a
very clear idea of what that information is like? Do we have a
good grasp of the semantic problems involved?

Becoming an expert in data structures is like becoming an
expert in sentence structure and grammar. It’s not of much value
if the thoughts you want to express are all muddled.

A

2

The information in the system is part of a communication
process among people. There is a flow of ideas from mind to
mind; there are translations along the way, from concept to
natural languages to formal languages (constructs in the machine
system) and back again. An observer of, or participant in, a
certain process recognizes that a certain person has become
employed by a certain department. The observer causes that fact
to be recorded, perhaps in a database, where someone else can
later interrogate that recorded fact to get certain ideas out of it.
The resemblance between the extracted ideas and the ideas in the
original observer’s mind does not depend only on the accuracy
with which the messages are recorded and transmitted. It also
depends heavily on the participants’ common understanding of
the elementary references to “a certain person”, “a certain
department”, and “is employed by”.

1.1 One Thing

What is “one thing”?
That appears at first to be a trivial, irrelevant, irreverent,

absurd question. It’s not. The question illustrates how deeply
ambiguity and misunderstanding are ingrained in the way we
think and talk.

Consider those good old workhorse database examples, parts
and warehouses. We normally assume a context in which each
part has a part number and occurs in various quantities at various
warehouses. Notice that: various quantities of one thing. Is it one
or many? Obviously, the assumption here is that “part” means
one kind of part, of which there may be many physical instances.
(The same ambiguity shows up very often in natural usage, when
we refer to two physical things as “the same thing” when we
mean “the same kind”.) It is a perfectly valid and useful point of
view in the context of, e.g., an inventory file: we have one
representative (record) for each kind of thing, and speak loosely
of all occurrences of the thing as collectively being one thing.
(We could also approach this by saying that the representative is
not meant to correspond to any physical object, but to the

3

abstracted idea of one kind of object. Nonetheless, we do use the
term “part”, and not “kind of part”.)

Now consider another application, a quality control
application, also dealing with parts. In this context, “part” means
one physical object; each part is subjected to certain tests, and
the test data is maintained in a database separately for each part.
There is now one representative in the information system for
each physical object, many of which may have the same part
number.

In order to integrate the databases for the inventory and
quality control applications, the people involved need to
recognize that there are two different notions of “thing”
associated with the concept of “part”, and the two views must be
reconciled. They will have to work out a convention wherein the
information system can deal with two kinds of representatives:
one standing for a kind of part, another standing for one physical
object.

I hope you’re convinced now that we have to go to some
depth to deal with the basic semantic problems of data
description.

We are dealing with a natural ambiguity of words, which we
as human beings resolve in a largely automatic and unconscious
way, because we understand the context in which the words are
being used. When a data file exists to serve just one application,
there is in effect just one context, and users implicitly understand
that context; they automatically resolve ambiguities by
interpreting words as appropriate for that context. But when files
get integrated into a database serving multiple applications, that
ambiguity-resolving mechanism is lost. The assumptions
appropriate to the context of one application may not fit the
contexts of other applications. There are a few basic concepts we
have to deal with here:

• Oneness.
• Sameness. When do we say two things are the same, or

the same thing? How does change affect identity?

4

• What is it? In what categories do we perceive the thing
to be? What categories do we acknowledge? How well
defined are they?

These concepts and questions are tightly intertwined with

one another.
Consider “book”. If an author has written two books, a

bibliographic database will have two representatives. (You may
temporarily think of a representative as being a record.) If a
lending library has five circulating copies of each, it will have
ten representatives in its files. After we recognize the ambiguity
we try to carefully adopt a convention using the words “book”
and “copy”. But it is not natural usage. Would you understand
the question “How many copies are there in the library?” when I
really want to know how many physical books the library has
altogether?

There are other connotations of the word “book” that could
interfere with the smooth integration of databases. A “book” may
denote something with hard covers, as distinguished from things
in soft covers like manuals, periodicals, etc. Thus a manual may
be classified as a “book” in one library but not in another. I don’t
always know whether conference proceedings constitute a
“book”.

A “book” may denote something bound together as one
physical unit. Thus a single long novel may be printed in two
physical parts. When we recognize the ambiguity, we sometimes
try to avoid it by agreeing to use the term “volume” in a certain
way, but we are not always consistent. Sometimes several
“volumes” are bound into one physical “book”. We now have as
plausible perceptions: the one book written by an author, the two
books in the library’s title files (Vol. I and Vol. II), and the ten
books on the shelf of the library which has five copies of
everything.

Incidentally, the converse sometimes also happens, as when
several novels are published as one physical book (e.g., collected
works).

So, once again, if we are going to have a database about
books, before we can know what one representative stands for,

5

we had better have a consensus among all users as to what “one
book” is.

Going back now to parts and warehouses, the notion of
“warehouse” opens up another kind of ambiguity. There is no
natural, intrinsic notion of what constitutes “one warehouse”. It
may be a single building, or a group of buildings separated by
any arbitrary distance. Several warehouses (e.g., belonging to
different companies) may occupy the same building, perhaps on
different floors. So, what is “one warehouse”? Anything that a
certain group of people agrees to call a warehouse. Given two
buildings, they might agree to treat them as one, two, or any
number of warehouses ⎯ with all perceptions being equally
“correct”.

IBM assigns “building numbers” to its buildings for the
routing of internal mail, recording employee locations, and other
purposes. One two-story building in Palo Alto, California is
“building 046”, with the two stories distinguished by suffixes:
046-1 and 046-2. Right next door is another two-story building.
The upper story is itself called “building 034”, and the lower
story is split into two parts called “building 032” and “building
047”. IBM didn’t invent the situation. The designations
correspond to three different postal addresses: 1508, 1510, and
1512 Page Mill Road are all in the same building.

Another IBM location in Santa Teresa, California, is
apparently one building, since it has one building number. The
structure has eight distinct towers. Signs inside direct you to
“building A”, “building B”, etc. How many buildings are there?

“Street” is another ambiguous term. What is one street?
Sometimes the name changes; that is, different segments along
the same straight path have different names. Based on a
comparison of addresses, we would probably surmise that people
on those various segments lived on different streets. On the other
hand, different streets in the same town may have the same
name. Now what does an address comparison imply?

Sometimes a street is made up of discontinuous segments,
perhaps because intervening sections just haven’t been built yet.
They may not even be on a straight line, because the ultimate
street on somebody’s master plan curves and wiggles all around.

6

And sometimes I can make a right turn, then after some distance
make a left turn and be back on a street with the same name as
the first. Is that one street with a jog? When do we start thinking
of these as different streets having the same name?

Is a street terminated by city, county, state, or national
boundaries? Suppose the street just ran right across the boundary,
same name and all. Would you be inclined to say that people
living in different countries lived on the same street?

Does the term “street” imply that motor vehicles can drive
on it? Some are narrower than alleys, and some are pedestrian
malls.

Does the term “street” include freeways, highways,
thruways, expressways, tollways, parkways, autobahns,
autopistes, autostradas, autoroutes, dual carriageways,
motorways, (I’m really just trying to convey one idea ⎯ what
do they call it in your neighborhood?) Very often, one highway
will coincide with portions of many different streets along its
route. Does a highway name count as a street name? Along some
segments, the highway name might be the only street name.
Various street segments will have various multitudes of names
(“look at all the highway markers on that pole!”). And, after I
make a turn, whether or not I’m on the “same street” may
depend on my own state of mind: which street name did I think I
was following? Finally: if I drive from New York to California
on Highway 66, have I been on the same street all the way?

Thus, the boundaries and extent of “one thing” can be very
arbitrarily established. This is even more so when we perform
“classification” in an area that has no natural sharp boundaries at
all. The set of things that human beings know how to do is
infinitely varied, and changes from one human being to another
in the most subtle and devious ways. Nonetheless, the “skills”
portion of a personnel database asserts a finite number of
arbitrary skill categories, with each skill being treated as one
discrete thing, i.e., it has one representative. The number and
nature of these skills is very arbitrary (i.e., they do not
correspond to natural, intrinsic boundaries in the real world), and
they are likely to be different in different databases. Thus, a
“thing” here is a very arbitrary segment partitioned out of a

7

continuum. This applies also to the set of subjects in a library file
or information retrieval system, to the set of diseases in a
medical database, to colors, etc.

This classification problem underlies the general ambiguity
of words. The set of concepts we try to communicate about is
infinite (and non-denumerable in the most mind-boggling sense),
whereas we communicate using an essentially finite set of words.
(For this discussion, it suffices just to think about nouns.) Thus, a
word does not correspond to a single concept, but to a cluster of
more or less related concepts. Very often, the use of a word to
denote two different ideas in this cluster can get us into trouble.

A case in point is the word “well” as used in the data files of
an oil company. In their geological database, a “well” is a single
hole drilled in the surface of the earth, whether or not it produces
oil. In the production database, a “well” is one or more holes
covered by one piece of equipment, which has tapped into a pool
of oil. The oil company had trouble integrating these databases to
support a new application: the correlation of well productivity
with geological characteristics.

1.2 How Many Things Is It?

A single physical unit often functions in several roles, each

of which is to be represented as a separate thing in the
information system. Consider a database maintaining scoring
statistics for a soccer team, both on a position basis and on an
individual basis. The database might have representatives for 36
things: 11 positions and 25 players. When Joe Smith, playing
halfback, scores a goal, the data about two things is modified:
the number of goals by Joe Smith, and the number of goals by a
halfback. That human figure standing on the field is represented
as (and is) two things: Joe Smith and a halfback.

Consider the question of “sameness”. Suppose Joe switches
to fullback, and scores another goal. Did the same thing make
those two goals? Yes: Joe Smith made both. No: one was made
by a halfback, the other by a fullback.

Why is that human figure perceived and treated as two
things, rather than one or three or ninety-eight? Not by any

8

natural law, but by the arbitrary decision of some human beings,
because the perception was useful to them, and corresponded to
the kinds of information they were interested in maintaining in
the system.

If the file only had data about player positions, then the same
physical object would be treated as being different things at
different times. Joe is sometimes a halfback and sometimes a
fullback. From the perspective of this file, his activities are being
performed by two different entities.

Also consider two related people (e.g., husband and wife)
who work for the same company. When considering medical
benefits, each of these people has to be considered twice: once as
an employee, and once as a dependent of an employee. How
many people are involved?

Or suppose a person held two jobs with the company, on two
different shifts. Does that signify one or two employees?
Shipping clerk John Jones and third-shift computer operator John
Jones might be the same person. Does it matter? Sometimes.

The notion is also applicable to warehouses. From the point
of view of another application, the thing involved is not a
warehouse at all, but a building or property on the assessment
rolls.

It is plausible (bizarre, perhaps, but plausible) to view a
certain employee and a certain stockholder as two different
things, between which there happens to exist the relationship that
they are embodied in the same person. There would then exist
two representatives in the system, one for the employee and one
for the stockholder. It’s perfectly all right, so long as users
understand the implications of this convention (e.g., deleting one
might not delete the other).

Transportation schedules and vehicles offer other examples
of ambiguities, in the use of such terms as “flight” and “plane”
(even if we ignore the other definitions of “plane” having
nothing to do with flying machines). What does “catching the
same plane every Friday” really mean? It may or may not be the
same physical airplane. But if a mechanic is scheduled to service
the same plane every Friday, it had better be the same physical
airplane. And another thing: if two passengers board a plane

9

together in San Francisco, with one holding a ticket to New York
and the other a ticket to Amsterdam, are they on the same flight?

Classification, e.g., of skills, impacts the notion of
“sameness” as much as the notion of “how many”. The way we
partition skills determines both how many different things we
recognize in this category, and when we will judge two things to
be the same. Consider a group of people who know how to do
such things as paint signs on doors, paint portraits, paint houses,
draw building blueprints, draw wiring diagrams, etc. One
classifier might judge that there is just one skill represented by
all of these capabilities, namely “artist”, and that every person in
this group had the same skill. Another classifier might claim
there are two skills here, namely painting and drawing. Then the
sign painter has the same skill as the portrait painter, but not the
blueprint drawer. And so on.

The same game can be played with colors. Two red things
are the same color. What if one is crimson and the other scarlet?

The perceptive reader will have noticed that two kinds of
“how many” questions have been intermixed in this section. At
first we were exploring how many kinds of things something
might be perceived to be. But occasionally we were trying to
determine whether we were dealing with one or several things of
a given kind. If you can’t apply that distinction to the preceding
discussions, then please don’t become a database administrator. I
fear your database may well become a minefield of semantic
traps.

For another example of the latter kind, consider program
problem reports (known as APAR’s in IBM). Considerable effort
is often expended in determining that the symptoms reported in
two APAR’s are caused by the same programming error;
thereafter, the two APAR’s are considered to be the “same”. (The
correctness of this view depends on whether you think the entity
involved is the programming error or the problem report.)

And analogously, much of the fuss in many insurance claims
and court battles revolves around determining whether several
things relate to the “same” illness or injury.

10

1.3 Change

And then there’s change. Even after consensus has been

reached on what things are to be represented in the information
system, the impact of change must be considered. How much
change can something undergo and still be the “same thing”? At
what point is it appropriate to introduce a new representative into
the system, because change has transformed something into a
new and different thing?

The problem is one of identifying or discovering some
essential invariant characteristic of a thing, which gives it its
identity. That invariant characteristic is often hard to identify, or
may not exist at all.

We seem to have little difficulty with the concept of “one
person” despite changes in appearance, personality, capabilities,
and, above all, chemical composition. (The proportions and
structure ⎯ i.e., the chemical formulas ⎯ may not change much,
but the individual atoms and molecules are continually being
replaced... again illustrating an ambiguity between “same kind”
and “same instance”: how rapidly is the chemical composition of
your body changing?) When we speak of the same person over a
period of time, we certainly are not referring to the same
ensemble of atoms and molecules. What then is the “same
person”? We can only appeal to some vague intuition about the
“continuity” of ⎯ something ⎯ through gradual change. The
concept of “same person” is so familiar and obvious that it is
absolutely irritating not to be able to define it. Definitions in
terms of “soul” and “spirit” may be the only true and humanistic
concepts, but, significantly, we don’t know how to deal with
them in a computer-based information system. It is only when
the notion of “person” is pushed to some limit do we realize how
imprecise the notion is. This is the basis of some legal issues.

Modern medicine is dissecting our concept of “person” via
transplanted and artificial limbs and organs. The Hopi Indians
consider mental activity to be in the heart [Whorf]; they might
argue that the recipient of a heart transplant becomes the person
who the donor was ⎯ the donor has merely acquired a new

11

body. (Is it a heart transplant or a body transplant?) We are more
likely to take that position with respect to the brain, rather than
the heart. A number of legal issues will have to be resolved when
brain transplants begin to be performed (and the issues may get
more complex if just portions of the brain are transplanted).

In an information system maintaining data about people, we
will have to decide which information gets interchanged between
two representatives. Which information is to be associated with
the body, and which with the brain? A name? A spouse? Other
relatives? How is the medical history rearranged? Who has
which job? Skills? Financial obligations?

We also have some issues regarding the beginning and
ending of a person. It makes sense in the context of some
medical records to treat an unborn fetus as an unborn person;
observations during pregnancy become a part of that person’s
medical history. A recent court case considered the question of
whether an unborn fetus was eligible for welfare benefits, which
would have made the fetus representable in the welfare database.
After death, a person ceases to exist for many legal purposes, but
the data about him (or his body) continues to be relevant to a
cemetery, or a coroner, or a medical researcher.

An analogous situation exists with automobiles. Suppose
you and I start trading parts of our cars ⎯ tires, wheels,
transmissions, suspensions, etc. At some point we will have
exchanged cars, in the sense that the Department of Motor
Vehicles must change their records as to who owns which car ⎯
but when? What is the “thing” which used to be my car, and
when did you acquire it? The Department of Motor Vehicles (at
least in California, I believe) has made an arbitrary decision: the
“essence” of a car is the engine block, which is (they assume)
indivisible and is uniquely numbered. Owning and registering a
car is defined to mean owning and registering the engine block.
All the other parts of the car can be removed or replaced without
altering the identity of the car.

What would happen if another state had a different
convention for establishing the identity of a car? Could their two
databases be integrated?

12

The same kinds of questions apply to organizations, such as
companies, departments, teams, government agencies, etc. Is it
still the same company after changes in employees? (Of course.)
Management? (Yes.) Owners? (Maybe.) Buildings and facilities?
(Yes.) Locations? (Probably.) Name? (Probably). Principal
business? (Maybe.) State and country of incorporation? (Maybe.)
The answers are significant to the handling of old contracts and
other obligations, the determination of employee vacation and
retirement benefits, etc.

And political boundaries. A database of population statistics
must have some definition of what is meant by India, Pakistan,
Germany, Czechoslovakia, etc., over time. There’s more
involved than a change of name; the things themselves have been
created, destroyed, merged, split, re-partitioned, etc. In some
other database it may have to be understood that two people born
at different times in the same town might have been born in
different countries.

There are some kinds of change which result in the existence
of two copies of the thing, corresponding to the states before and
after the change. There are several ways to deal with this
situation: (1) Discard the old and let the new replace it, so that it
is really treated as a change and not as a new thing; (2) Treat the
old and the new as two clearly distinct things; and (3) Try to do
both.

The significance of differences between copies shows up in
books and other textual matter. The document you are reading
now is one book. It has been and will be the “same book”
throughout a series of changes, and may even appear published
in several forms with various changes in wording, punctuation,
etc.

A whole spectrum of concepts. There is the “one book”
containing the ideas expressed by an author, which is the same
book regardless of which language it is translated into, or how it
is edited, abridged, condensed, revised, etc.

Then there are “editions”, which differ from each other by
some arbitrary amount, due either to changes in the content or to
the correction of significant amounts of error. On the other hand,

13

some minor amount of difference (erroneous or deliberate) is
permitted between reprints of a single edition.

A condensation or abridgment may be grossly different from
the original, but for some purposes it is treated as being the same
book.

This topic is most painfully familiar to us in relation to
“versions”, e.g., of such things as programs. There is some
arbitrary threshold up to which minor changes can be made
without creating a new version. The old copy is discarded, there
may or may not be a record of the modification, and the
representative (e.g., catalog entry) of the old copy now serves to
represent the new copy.

Beyond a certain (arbitrary) point, we decide to keep the old
and new copies as different versions. We now enter a
metaphysical realm in which we manage to merge the concepts
of “one” and “many”, as in the expression “these several things
are different versions of the same thing”. In some contexts we
mean to refer to all versions collectively (as in the property: this
is a FORTRAN compiler), in some we refer to a particular copy,
and in some we refer to one copy ⎯ whichever one happens to
be the “current” version.

A user who invokes the FORTRAN compiler several times
probably believes that he is invoking the “same thing” each time
even if he gets different versions. From this point of view, there
should be one representative for this thing (“the current version”)
even though it represents different things at different times. Each
version should also have its own permanent representative, and
there probably should also be one representative for the
collective concept of “FORTRAN compiler” independent of
version. The representatives for the current copy and the
collective concept may or may not be the same; is the property
“required memory size” applicable to both?

1.4 The Murderer and the Butler

Combining the ideas of our last two sections: sometimes it is

our perception of “how many” which changes. Sometimes two
distinct entities are eventually determined to be the same one,

14

perhaps after we have accumulated substantial amounts of
information about each.

At the beginning of a mystery, we need to think of the
murderer and the butler as two distinct entities, collecting
information about each of them separately. After we discover
that “the butler did it”, have we established that they are “the
same entity”? Shall we require the modeling system to collapse
their two representatives into one? I don’t know of any modeling
system which can cope with that adequately.

1.5 Categories (What Is It?)

We have so far been focusing on the questions of “oneness”

and “sameness”. That is, given that you and I are pointing to
some common point in space (or we think we are), and we both
perceive something occupying that space (perhaps a human
figure), how many “things” should that be treated as in the
information system? One? Many? Part of a larger thing? Or not a
thing at all?

And: do we really agree on the composition and boundary of
the thing? Maybe you were pointing at a brick, and I was
pointing at a wall.

And: if we point to that same point in space tomorrow (or
think we are), will we agree on whether or not we are pointing at
the same thing as we did today?

None of this focuses on what the thing is. I don’t mean its
properties, like is it solid, or is it red, or how much does it weigh,
but what is it? I had to use the phrase “human figure” above
because I didn’t think you would follow my point if I kept using
the indefinite word “thing” ⎯ I had to convey some kind of
tangible example. But that phrase is just one possible perception
of the “thing” we pointed to. You might have said it was a
mammal, or a man, or a solid object, or a bus driver, or your
father, or a stockholder, or a customer, or ... ad nauseam.

I will refer to what a thing is ⎯ or at least what it is
described to be in the information system ⎯ as its “category”,
agreeing with the usage in, e.g., [Abrial]. The same idea is also
often called “type”, or “entity type”. Like everything else, the

15

treatment of categories requires a number of arbitrary decisions
to be made.

There is no natural set of categories. The set of categories to
be maintained in an information system must be specified for
that system. In one system it might be employees and customers,
in another it might be employees and dependents, or enrolled
computer users, or plaintiffs and defendants, and in an integrated
database it might include all of these. A given thing
(representative) might belong to many such categories.

Not only are there different kinds of categories, but
categories may be defined at different levels of refinement. One
application might perceive savings accounts and loan accounts as
two categories, while another perceives the single category of
accounts, with “savings” or “loan” being a property of each
account. In another case, we might have applications dealing
with furniture or trucks or machines, while another deals with
capital equipment (assigning everything a unique inventory
number). Thus, some categories are, by definition, subsets of
others, making a member of one category automatically a
member of another. Some categories overlap without being
subsets. For example, the category of customers (or of plaintiffs,
in a legal database), might include some people, some
corporations or other businesses, and some government agencies.

It is often a matter of choice whether a piece of information
is to be treated as a category, an attribute, or a relationship.
(Which raises the question of how fundamental such a
distinction really is.) This corresponds to the equivalence
between “that is a parent” (the entities are parents), “that person
has children” (the entities are people, with the attribute of having
children), and “that person is the parent of those children” (the
entities are people and children, related by parentage).

It’s often difficult to determine whether or not a thing
belongs in a certain category. Almost all non-trivial categories
have fuzzy boundaries. That is, we can usually think of some
object whose membership in the category is debatable. Then
either the object is arbitrarily categorized by some individual, or
else there are some locally defined classification rules which
probably don’t match the rules used in another information

16

system. Just as an example, consider the simple and “well
understood” category of “employee”. Does it include part-time
employees? Contract employees? Employees of subsidiary
companies? Former employees? Retired employees? Employees
on leave? On military leave? Someone who has just accepted an
offer? Signed a contract but not yet reported for work? Not only
do the answers have to be decided according to how the
company wants to treat the data, but perhaps the questions can’t
even be answered consistently within the company. A person on
leave may not be an employee for payroll purposes, although he
is for benefits purposes. Then the notions of category and
property have to be reexamined again, to arrive at a set
meaningful to all users.

As another example, consider the category of “cars”, and
decide if the following are included: station wagons, micro-
buses, ordinary buses, pickup trucks, ordinary trucks, motor
homes, dune buggies, racing carts, motorcycles, etc. What about
a home-made contrivance in which a short pickup truck bed is
hung out of the trunk of a sedan? An old bus converted to a
motor home?

As long as we are traveling, answer this question: what’s the
difference between a motel and a hotel? (If you have an answer,
you haven’t traveled much lately.)

“A more amusing example is to imagine a continuum of
physical objects between some given chair and table, constructed
by letting the chair back shrink while its seat expands and
flattens, and its legs become higher. There will be some strange
objects in this continuum which cannot clearly be assigned to
either class” [Goguen]. Does the distinction between a bench and
a table depend on your height?

The editor of a collection is often listed as the “author” of
the book. Did he “author” anything?

The category of a thing (i.e., what it is) might be determined
by its position, or environment, or use, rather than by its intrinsic
form and composition. In the set of plastic letters my son plays
with, there is an object that might be an “N” or a “Z”, depending
on how he holds it. Another one could be a “u” or an “n”, and
still another might be “b”, “p”, “d”, or “q”.

17

©The New Yorker Collection 1992 Gahan Wilson from cartoonbank.com. All Rights Reserved.

The purposes of the person using an object very often
determine what that object is perceived to be (cf. [Stamper 77]). I
can imagine the same hollow metal tube being called a pipe, an
axle, a lamp pole, a clothes rack, a mop handle, a shower curtain
rod, and how many more can you name? A nail driven into a wall
might be designated a coat hook.

You may think you are carrying the inventory file under your
arm. But the customs agent perceives a quantity of magnetic
tape, and randomly snips off a sample.

Now consider some physical objects. One is a vertical rod
mounted on the center of a circular stone. The second is a set of
metal pointers driven
around a common axis
by a system of
mechanical gears. The
third is a marked
cylinder of paraffin,
with a burning cotton
core. The fourth has
two chambers, with a
fluid flowing between
them. The fifth is a
flashing digital display
driven by solid state
circuitry. Are these all
the same kind of object? Yes ⎯ if you happen to perceive them
as clocks.

On the other hand, is a watch a clock? Of course it is ⎯ but
try asking someone if he has a clock with him.

In part, these observations illustrate the difficulty of
distinguishing between the category (essence) of a thing and the
uses to which it may be put (its roles).

There are also interesting questions having to do with
fragments of things, and imitations. Is it still a donut after you’ve
taken a bite out of it? Did you ever call a stuffed toy an animal?

And, like everything else, the category of an object can
change with time. A dependent becomes an employee, and then a
customer, and then a stockholder. A slab of marble becomes a

18

sculpture. A piece of driftwood becomes a work of art ⎯ just by
being found and labeled! An ingot of steel becomes a machined
part.

The number of entities changes, too. One ingot becomes
many parts. Cutting a work of art in pieces may be vandalism ⎯
or it may create many works of art.

Perhaps the easiest way out is to ignore the principles of
continuity and conservation that we have learned since earliest
childhood. It simply is no longer the same object. The sculptor
does not “modify” the marble. He destroys the slab, and creates a
sculpture.

The fundamental problem of this book is self describing. Just
as it is difficult to partition a subject like personnel data into neat
categories, so also is it difficult to partition a subject like
“information” into neat categories like “categories”, “entities”,
and “relationships”. Nevertheless, in both cases, it’s much harder
to deal with the subject if we don’t attempt some such
partitioning.

For a closing amusement, do you remember “Who’s On
First”? Well, here’s a variation:

“Which is bigger, a baseball team or a football team?”
“A football team, of course.”
“Why’s that?”
“A football team has eleven players, and a baseball team has

nine.”
“Name a baseball team.”
“The San Francisco Giants.”
“How many players do they have?”
“About twenty five.”
“I thought you said a baseball team has nine players.”
“I guess it’s twenty five.”
“Any twenty five baseball players?”
“No, just the twenty five on one roster.”
“If they trade a player, does that change the team?”
“Of course.”
“You mean they’re not the San Francisco Giants any more?”
And so on.

19

1.6 Existence

In a record processing system, records are created and

destroyed, and we can decide with some certainty whether or not
a given record exists at any moment in time. But what can we
say about the existence of whatever entities may be represented
by such a record?

1.6.1 How Real?

It is often said that a database models some portion of the
real world. I’ve said so in this book.

It ain’t necessarily so. The world being modeled may have
no real existence.

It might be historical information (it’s not real now). We can
debate whether past events have any real existence in the
present.

It might be falsified history (it never was real) or falsified
current information (it isn’t real now). Fraudulent data in welfare
files: is that a model of the “real” world?

It might be planning information, about intended states of
affairs (it isn’t real yet).

It might be hypothetical conjectures ⎯ “what if”
speculations (which may never become real).

One might argue that such worlds have a Platonic, idealistic
reality, having a real existence in the minds of men in the same
way as all other concepts. But quite often the information is so
complex that no one human being comprehends all of it in his
mind. It is not perceived in its entirety by any agency outside of
the database itself. Or, although not overly complex, the
information may simply not have reached any human mind just
yet. The computer might have performed some computations to
establish and record some consequence of the known facts,
which no person happens to be aware of yet. It happens all the
time: computers often record accounts as being overdrawn some
time before any people are told about it. And even more
obviously: that is precisely the point of doing hypothetical

20

simulations by computer. The computer figures out who wins a
simulated war game; in the interval between the computation and
a person’s reading of the output, this result is in the computer ⎯
but what person “knows” it?

Where is the reality that the database is modeling?
And what about fiction? The subjects of some databases are

the people, places, and events occurring in fiction (literature,
mythology). This again stretches the concept of the “real world”
being modeled in a database. (Isn’t fiction the opposite of
reality?) But beyond that, it challenges certain premises about
certain kinds of entities.

It is sometimes held that there are certain “intrinsic
attributes” which all entities of a certain type must possess. For
people, such attributes include birthdate, birthplace, parents,
height, weight, etc. Does Hamlet have these attributes? Cities
have a geographic location, an area, a population, etc. Does
Camelot have these attributes?

Or shall we say instead that Hamlet is not a person, and
Camelot is not a city?

Note that this situation is very different from a simple lack of
information. It is not uncommon to say that we don’t know a
certain person’s birthday, and to record it as “unknown” in the
database. That implies the possibility of eventually discovering
and recording what it is. Instead, we are questioning whether
such characteristics exist at all.

To conclude, if we can’t assert that a database models a
portion of reality, what shall we say that a database does in
general? It probably doesn’t matter. Once again, it seems that we
can go about our business quite successfully without being able
to define (or know) precisely what we are doing.

If we really did want to define what a database modeled,
we’d have to start thinking in terms of mental reality rather than
physical reality. Most things are in the database because they
“exist” in people’s minds, without having any “objective”
existence. (Which means we very much have to deal with their
existing differently in different people’s minds.) And, of the
things in the database which don’t exist in any person’s mind,

21

whose mental reality is that? Shall we say that the computer has
a mental reality of its own?

1.6.2 How Long?

Some kinds of entities have a natural starting and ending,
and others have an “eternal” existence; creation and destruction
aren’t relevant concepts for them. The latter tends to be true of
what we call “concepts” ⎯ numbers, dates, colors, distances,
masses.

We could be perverse and wonder in what sort of Platonic
sense such concepts have “always” existed. Did zero exist before
some ancient Arab thought of it? Did gravity exist before
Newton? Did the concept of television exist 50 years ago?

It doesn’t really matter, for our purposes. We are not going to
have to worry about creating and destroying such conceptual
entities. Unless.... you are a cosmetic company, “inventing” new
colors every day... or a number theorist, computing certain
numbers (e.g., the primes, or perfect numbers), and adding each
one to a list as you “discover” it.

There are, at the other extreme, tangible physical objects that
have a well defined finite period of existence, a beginning and an
end. Creation and destruction are very relevant concepts here.

But notice that I hesitate to list examples. Beginnings and
endings are often processes, rather than instantaneous events. We
get tied up in our definitions of what entities are in the first
place. Is it the whole thing when it’s partially formed? The whole
abortion controversy centers on this: does a person become a
person at conception, or birth, or somewhere in between? Does a
car stop being a car when it enters the junkyard? Or after it’s
been deformed into a solid cube?

The entity concept enters in some other ways, too.
Depending on what entity categories we choose, a certain
process may or may not create an entity. Hiring merely alters the
attributes of a person, but it creates an employee (but be careful
⎯ it might be a re-hire!). And, did the sculpture always exist in
the marble? Recall the old vaudeville directions for sculpting an
elephant: just cut away the parts that don’t look like an elephant.

22

In spite of all of this, we can entertain a notion that tangible
objects have a finite existence, a beginning and an ending.

Not that we always really care. For most of our practical
purposes, we prefer to treat certain objects as eternal, those
whose “finite” existences appear virtually infinite: the
continents, the planets, the sun, the stars. The creation and
destruction of these are real only to astronomers, and to science
fiction fans (real???).

But suppose that we had neatly defined tangible objects,
with instantaneous beginnings and endings. Does that solve all
the important problems?

We are, of course, not interested primarily in the objects
themselves, but in the information we have about them. Does our
handling of this information mimic the creation and destruction
of such objects? Do we start having information about such
objects at the instant of their creation, and stop having the
information at the instant of their destruction? Of course not. We
often become aware of things long after their creation (the
people we deal with, the things we buy). And we’re sometimes
aware of them before their creation. Data are kept about children
before their birth. Unborn ⎯ and unconceived ⎯ children are
mentioned in wills. Data may kept about ordered merchandise
long before manufacture begins.

And we certainly keep information about things long after
they have ceased to exist.

So, does the creation and destruction of information have
any direct relationship to the beginning and ending of objects?
Almost never. “Create” and “destroy”, when applied to
information, really instruct the system to “perceive” and
“forget”.

Once more: we are not modeling reality, but the way
information about reality is processed, by people.

23

2 The Nature of an Information System

or the most part we are looking at the nature of
information in the real world. But our ultimate motivation
is to formulate descriptions of this information so that it

may be processed by computers. In this chapter we briefly
explore how this goal shapes our view of information. Among
other things, we touch on the need for having data descriptions.

At a fundamental level, there are certain characteristics of
computers that have a deep philosophical impact on what we do
with them. Computers are deterministic, structured, simplistic,
repetitious, unimaginative, unsympathetic, uncreative. These
notions I leave as background; that’s a different plane from the
one I want to be on. (Some may argue with those
characterizations. Some artificial intelligence experiments have
simulated more elegant computer behavior. But it remains an
adequate description of the computers that will be processing our
data in the near term.)

We take “information system” to be more or less
synonymous with the term “integrated database”. We mean to
deal only with information that can be perceived as some formal
structure of relatively simple field values (as in computerized file
or catalog processing). We thus exclude, for example, text based
systems, with their capabilities for parsing, abstracting, indexing,
and retrieving from natural language text.

2.1 Organization

A computer is typically described as consisting of input,

processing, output, and memory. I will change the words slightly,
and suggest that we need to think of three basic parts of a data
processing system: a repository, an interface, and a processor.

F

24

2.1.1 Repository

The repository “contains” information, in some static sense.
We have to have some mental system for imagining what is
inside that repository. That’s what this book is mostly about.
Whether we think in terms of words written and erased on
blackboards or beads resting on an abacus, we have to have some
mental concept. For some people and some purposes, the right
image involves magnetic fields and silicon; for others the image
is in terms of files of punched cards.

I want to suggest that we try to adopt an image more in terms
of the informational functions performed for us, rather than in
terms of the mechanical processes and materials that perform
those functions. By way of analogy, I would say that we should
think of a clock as containing a “repeater”, an abstract
mechanism capable of actuating something at precise and
uniform time intervals. We would say nothing about gears and
escapements, or silicon circuits, or pivoted and balanced water
pipes.

2.1.2 Interface

The interface is the medium of communication between you
and the repository, or, more precisely, between you and the
processor. It may actually consist of punched cards and readers,
printers and printed forms, typewriter terminals, graphic
displays, etc. etc. For our purposes, we need only imagine it as
an opaque surface with a stream of symbols passing in and out of
it.

2.1.3 Processor

The processor receives symbol streams coming in across the
interface. Parts of the stream are instructions to the processor,
e.g., to change information or to find answers to questions. Parts
of the stream represent information which is to be put into the

25

repository, or which is used to find things in the repository (e.g.,
the name of the person about which you want information).

The processor, following instructions, alters or retrieves
information in the repository. It then generates an outgoing
stream across the interface, containing either requested
information or status about the operations.

2.2 Data Description

2.2.1 Purpose

In a totally generalized system, there might be a universal
naming convention uniformly applicable to all things. For
example, one might postulate that a name is any string of
characters, of unlimited length; every thing has one or more such
names (if several, the names are interchangeable and
synonymous). Conventional systems don’t support such
generality, and we rarely want it. In most cases, there are
restrictions on the kinds of names that are acceptable. There may
be limits on length (perhaps a certain fixed length for a certain
kind of thing), and restrictions on acceptable characters and
syntax (only digits, only letters, must start with a letter, hyphens
in certain positions, rules about blanks and commas and periods,
etc.). A thing often has different kinds of names, which are not
synonymous and interchangeable (social security number and
employee number; license number and engine number). To
enforce such constraints, we have to notify the information
system, in advance, which naming conventions will apply to
which kinds of things (to employees, departments, parts,
warehouses, cities, cars, etc.).

Similarly, an information system might be totally permissive,
imposing no constraints at all on the semantic sensibility of
information. The system would accept such information as “the
accounting department has a shipping weight of 30 pounds, and
has two children named 999-1234 and 12.50”. While it is
possible to build such totally generalized systems, it is
customary, in all current data processing systems, to exclude

26

such absurdities. Provision is needed to specify which things can
sensibly have which properties, and which relationships make
sense between which things.

Pre-definition of information is also needed in order to
specify security constraints, to specify validity criteria for
information, and to specify how representations are to be
interpreted (data type, scale, units, etc.).

There are also economic implications. Known limitations on
the lengths of various information, and a predictability of which
pieces of information will or won’t occur together, make it
possible to plan much more efficient utilization of computer
storage. In fact, if the constraints are strict enough, very efficient
repetitions of simple patterns can be employed. Furthermore, if
formats are rigid enough, and the number of combinations of
things that might occur is limited, then programs and procedures
can be kept simple and efficient. This is precisely why data
processing is currently done in terms of records.

Such rules and descriptions should be assertable before
information is loaded into the system, and obviously can’t be
expressed in terms of individuals. (“Tom, Dick, and Harry must
have 6-digit employee numbers.”)

At the semantic level, we have adopted (in section 1.5.) the
term “category” to label the intrinsic character of a thing (“man
or mouse”). It also offers an attractive way of specifying rules
about things without referring to the individual things. One
simply asserts that certain rules apply to all things in a certain
category; one only has to name the category, not the individuals.

Categories are at the foundation of almost all approaches to
the description of data, and we will also adopt such an approach
for the time being. But we will have some critical things to say
about it later.

2.2.2 Levels of Description

Real systems are not so monolithically simple as our
idealized system organization of interface, processor, and
repository. A single system typically supports a myriad of
interfaces and processors, each with its own capabilities,

27

protocols, and languages. A large variety of programs are
developed to serve a variety of application areas. For our
purposes, it doesn’t matter whether we think of such programs as
interface or processor.

The various people and applications using a database are
likely to have different perceptions of the entities and
information they are dealing with (employees vs. stockholders;
employer implied by record type vs. employer as a field value).
Different applications use different facts about entities, so that an
employee record may look quite different in the personnel
application and in the medical benefits application. It is also
possible for these applications to use different data processing
disciplines, i.e., different file types, access methods, and data
structures. These generally provide different ways of
representing relationships and different interfaces for
manipulating the data.

Thus there is a level of description corresponding to the
perceptions and expectations of various applications, specifying
such things as record formats, data structures, and access
methods. For some kinds of question answering systems, or
systems with graphical displays, the descriptions might not even
be couched in terms of record formats.

All these applications may be supported by a common pool
of data, an integrated database. One significance of integration is
that common attributes are synchronized; e.g., changing an
employee’s address also changes his address in the stockholder
file, if he happens to be one. Synchronization may be achieved
by maintaining the address in only one place, or by the system’s
recognizing that a change in one place must automatically be
propagated to another place. The method doesn’t matter, as long
as the information appears synchronized to users.

Another significance of integration is that a new application
may “borrow” data already in the database for the benefit of
other applications. The new application’s requirements can be
mapped directly to the integrated database. Without integration,
it can be difficult and often impossible to extract the data from
several physically unrelated files and then merge it into a form
useful to the new application.

28

The integrated database is the system’s analog to the real
world: it is that ongoing persistent thing of which different
applications may have different perceptions.

Unlike the real world, however, we don’t have the luxury of
merely saying “it’s there ⎯ make of it what you will, with your
own eyes and ears and mind”. The database has to be described
to the system.

We have a choice of describing the integrated database in
“physical” terms, or in both “physical” and “logical” terms.
Physical descriptions specify the location, format, and
organization of the data on disks, tapes, or other storage media;
the locations of key fields in records; the kinds of pointers used
to reference related records; the criteria for physical contiguity of
records, and the handling of “overflow” records; the kinds of
indexes provided, and their locations; etc. Logical descriptions
are more in terms of the information content of the database: the
kinds of entities, the attributes, and the relationships among
them.

We have identified three levels of description:

• The multiple views held by a variety of applications,

each employing their own variations on record formats,
structures, and access techniques. This level is variously
referred to as “user”, “application”, “external”,
“program”, and “logical”.

• The physical layout of data in storage, including
implementation techniques for various paths and
linkages. The common names for this level are
“internal”, “storage”, and “physical”.

• The specification of the information content of the
database, employing concepts equivalent to entities,
attributes, and relationships. Names for this level include
“conceptual”, “information”, and “entity” (and,
sometimes, “logical”).

There is growing recognition of a need to provide and

maintain these three levels of description ([ANSI], [GUIDE-
SHARE]).

29

This separation into multiple levels of descriptions is
necessary to cope with change. Experience has shown that the
way data is used changes with time. Application programs
change the way they use the data. They change record formats,
and they change the combinations of records they need to see in
a single process. New applications need to see records containing
data that had previously been split among several records. Other
new applications need extensions to existing data (e.g.,
additional fields in old records), without perturbing the old
applications. Applications sometimes change the data
management technique which they use to access the data.

Below the interface seen by these applications, the physical
layout of the data changes. The grouping and sequencing of data,
redundancy, and various kinds of access paths combine to
provide certain performance tradeoffs for the various
applications. Such parameters are often “tuned” to vary these
performance characteristics, and such tuning is not supposed to
affect the logical operations of the applications.

As an increasing number of applications interact with an
increasingly large integrated database, the effects of such
changes become much more complex, more difficult to predict
and control. Davies described the problem some ten years ago:

“...nothing stands still or, conversely, everything is subject to
change and does... When IBM changed from five to six character
man numbers, all programs referring to a data set containing man
numbers had to be recompiled. In addition, all data sets in active
use had to be copied to change their formats. This was by no
means the end of the work. What about the data sets containing
man numbers that had become history? The man number field
most certainly did not change length in these data sets. Now we
have two definitions of the field to contend with forever, unless
of course all history is copied and the format changed to reflect
the latest definition of the field wherever it appears. In the case
of applications like inventory control for fifty thousand items or
so, this would have been in excess of two thousand reels of tape!

“This is still not the end. All programs referring to history
would have to be recompiled. Another example of the kind of
change that is punitive to current application programs is the

30

case of the field that changes from one data set to another. It
must be understood that a data set represents that collection of
fields most frequently needed the majority of the time. While
this, of course, is absolutely true, frequency of access changes
with time.

“Unfortunately, a program written today that did not require
a certain field may, when changed tomorrow, require that field. If
we physically move the field from one data set to another,
although we satisfy the program requiring the field, we would
have rendered useless the programs previously referencing the
original data set from which we removed the field. These
programs could not be recompiled to recover our losses but
rather their logic would have to be changed in order to address
the field, because it is now in a different physical data set.

“The preceding are but two occurrences of changes to a data
set that did not affect the logic of most programs using the data
set. The author has been a witness to no less than five hundred
such changes, affecting over fifteen hundred data sets and five
thousand programs. The logic was not being changed. It is
frightening to say the least, but worse, it reduces the already too
small qualified programming staffs to fire fighters instead of
allowing them to enlarge the application” [Davies].

A need is emerging to manage the data in a manner that is
insensitive to such changes. A new role is emerging ⎯ the
Database Administrator. A large part of his job consists of
defining and managing this mass of information as a corporate
resource ([ANSI] splits out this part of the job into the role of
“enterprise administrator”). He needs a way to describe this
information purely in terms of “what kinds of information do we
maintain in the system”. With this description (the conceptual
model) as a reference, he can then separately specify the various
formats in which this data is to be made available to application
processes (the external models), and also the physical
organizations in which the data is to exist in the machine (the
internal model).

Besides its role in an operational database system, a
conceptual model is also needed in the planning process. It
provides the basic vocabulary, or notation, with which to collect

31

the information requirements of various parts of the enterprise. It
provides the constructs for examining the interdependencies and
redundancies in the requirements, and for planning the
information content of the database.

This book is essentially concerned with the conceptual
model, i.e., the descriptions of the information content of the
database. It reflects a perception of reality held by one person or
group, in the role of database administrator. This administrator
decides what portion of the real world is to be reflected in the
database, and which constructs, conventions, models,
assumptions, etc., are to be used. Although it is a single
perception of reality, it must be broad and universal enough to be
transformable into the perceptions of all the applications
supported by the database.

2.2.3 The Traditional Separation of Descriptions and Data

In traditional record processing systems, constraints on
information are implicitly enforced by the rigid discipline of
record formats. The birthday of a car cannot be recorded
anywhere, if there is no defined record format putting two such
fields into one record. Alphabetic employee numbers are
excluded by specifying the data type of the field as numeric; the
defined field length determines the length of acceptable
employee numbers.

Out of this practice emerged a “type” concept, referring to
record formats. A set of records of type X all conform to the
described format for type X records. And the systems require
record descriptions. (But the level of discipline varies
considerably. A system might only require specification of the
length of a record, to know how to fit it into available storage. In
such a minimal system, all kinds of junk might still be crammed
into a record.)

Such practices have two consequences in data processing
systems: the emergence of a type concept, and the partitioning of
the repository into two disjoint parts (often with distinct
interfaces and processors): one for the data, and one for the
descriptions.

32

We have thus far described a very simple system
organization, consisting of interface, processor, and repository.
The descriptions, and constraints, have to be somewhere.

Historically, the repository has been partitioned into two
unconnected regions, the data files and the descriptions
(contained in system catalogs or data dictionaries). The
descriptions had to be formatted specially because system code
looked at it, and it had to do that efficiently. Also the system had
to be protected from anyone tampering with the descriptions, as
they might with ordinary data, because the system fell apart if
the descriptions didn’t match the data. If a file description is
changed, that’s more than just a change in information ⎯ the
system has to do something, usually traumatic, to make the file
fit the new description.

These concerns far overshadowed any possible need by any
application to get at data that happened to be in the catalog or
dictionary. The separation is so entrenched in the thinking of
most data processing people that they don’t even understand
what I’m talking about. Catalogs and files are so “obviously”
different things that they can’t fathom any commonality. One of
them is encoded information used by the system, and the other is
the data used by applications.

There are some parallels between the two. Files and catalogs
both contain descriptions (or data) about things. We can easily
switch the traditional uses of some terms: an employee file
contains descriptions of employees, while catalogs contain data
⎯ about data. Consider the parallels between the conceptual
forms of such information:

• A record type contains a number of fields, each of which

has a name and some attributes.
• A department has a number of employees, each of which

has an identifier and some attributes.

These statements are perfectly symmetrical in form. There is

an important functional difference: with data about data,
modifications need to be carefully controlled; they have
consequences that must be carried out by the system. E.g., if

33

someone says the number of fields in a record type is changed,
then the file containing those records had better actually be
reformatted.

The distinction between information needed by the system
and by applications isn’t so sharp either; we have examples in
section 8.2.2. And, finally, I would point out that systems can be
implemented with the data and descriptions in the same
repository, and in the same form (e.g., System R [Chamberlin
76b]).

2.3 What is “In the System”?

The perverse nature of information touches everything: we
can’t even clearly define what information is “in the system”.

For the purpose of this discussion, we distinguish between
“raw” and “deduced” information. Raw information is that
which the system has no way of knowing unless it is asserted to
the system, e.g., the names of the employees in a department.
Deduced information is then anything that can be computed or
otherwise derived from the raw information, e.g., the number of
employees in the department. Under what conditions shall we
consider deduced information to be “in the system”? Consider
the following cases:

1. The only way to determine the number of employees in

the department is to ask for the names and count them
yourself.

2. There is a count field in the department record.
Whenever an application adds or deletes an employee,
the application is also supposed to update the count field.

3. Declarations for the information system define a
computed count field. Whenever an employee is added
or removed, the system updates the count and stores it
with the other information about the department.

4. Declarations for the information system define a count
field as part of the data needed by your application. The
field is never stored (this is sometimes called a “virtual”
data field). Whenever your application retrieves a

34

department record, the system counts the number of
employees and inserts the count into the record produced
for your application.
Your application can’t tell the difference between cases 3
and 4, except perhaps in the time it takes to retrieve the
information.

5. You interface with a query processor, and ask it how
many employees are in the department. The query
processor extracts the list of names, counts them, and
tells you the answer. (Sometimes a query processor can
be considered part of the information system. I am
thinking more of the case where a query processor can
be purchased and installed separately, after the
underlying system has been installed and loaded with
data. Does installing the query processor increase the
information content of the system?)

6. The manipulative interface of the information system
provides a count function. For example, it may be
possible to request “the next department record for
which the count of employees exceeds ten”.

In which of these cases does the system “contain” the

information? The only unambiguous cases are 2 and 3, where the
data is literally stored in the system. The other cases can all be
debated, and have been. Consider case 1 from the security point
of view. Suppose the size of a department is sensitive
information. If you release a list of a department’s employees,
have you violated security? The security officer would take a
dim view of your protest “I didn’t tell them how many!”.

We will have more about implicit relationships in sections
4.6 and 10.5.

There is another sense in which information may implicitly
exist in the system. One often tends to think of information in the
system as the contents of various fields in records. A fact in a
database is sometimes defined as an association between two
fields: one giving the value of an attribute (weight = 200 lb.) and
one identifying the entity having that attribute (name = Henry
Jones). However, the mere existence of a record in a file in itself

35

bears information. In the employee file, there is no field giving
the employer’s name; the presence of the record in the file
implies that the corresponding person works for this company. In
effect, the employee file serves as an “existence list” (cf. sections
2.4, 10.6.).

Another common form of implicitly represented information
has to do with data which depends on some kind of continuous
variable, such as time or weight. Examples: the departments to
which an employee was assigned at various times, or the postal
rates applicable to various shipping weights. Although one can
determine what an employee’s department was at any point in
time, the data is not stored that way. The only things which are
actually stored are “breakpoints”, i.e., points (of time or weight)
at which the information changes. Extracting the data values for
a given time or weight involves a combination of table lookup
and computation. These are examples of procedural existence
tests, essentially of a range test variety (section 2.4), combined
with computed relationships (section 4.6).

[Folinus] offers a unifying approach to many of these
questions which equates “data in the system” with what can be
extracted, rather than with what is physically stored. The system
is modeled as a set of named functions, which are capable of
returning certain values when invoked with certain arguments.
An update presumably modifies the function, so that it
subsequently returns different results for the same argument. The
implementation of the functions is masked from the user; it
might involve simple access to stored data, complex traversals of
data structure, and/or computations. Thus the information
content of the system is defined by this set of functions, rather
than in terms of physically stored data. (It may not be possible to
completely hide the implementation; see section 4.6.) This
description of information content is still incomplete, of course.
We can always mentally infer other information from the values
returned by functions. [Hall 75] presents a somewhat similar
notion of representing a relation as a procedural mapping.
Similar concepts occur in the “accessor” mechanism of [Abrial],
and also in inferential systems (e.g., [Ash], [Levien]).

36

Case 6 does illustrate another important point. The kinds of
information that a system is capable of handling are as much
determined by its manipulative interface as by its declarative
facilities. There is a very thin line between the ability to declare
something about a data item and the ability to dynamically
request a data item with the same characteristics. Someone has
said that “structure is process slowed down”. The more you
declare, the less your applications have to do procedurally ⎯
and the effect is more stable.

In terms of the abstract organization of an information
system we introduced earlier: the distinction between processor
and repository is not so clear after all.

Still another form of implicit information concerns the
meaning of the data items in the system. In almost all current
data systems, you would be able to retrieve a record containing
“Joe Smith” and “95” in adjacent fields, with no clue from the
system as to whether the “95” was his age, weight, commuting
distance, hours worked last week, or something else. If such
information is in the system at all, it is traditionally in a catalog
or dictionary, quite segregated from the data you are processing,
and having to be accessed by entirely different means (section
2.2.3). It is customary to expect that you, the user, know what the
fields signify. The manner in which a multiplicity of users get to
know, and agree about, what these data items mean is the central
point of data description.

Such information could be perceived as part of the “normal”
information content of the system if we expect to get answers to
such questions as:

• What attributes do we maintain about employees?
• Which attributes of Joe Smith have undefined (or null)

values?
• In what relationships is Joe Smith involved?
• What are the relationships between Joe Smith and

department Z99?

37

2.4 Existence Tests In Information Systems

Suppose you said to the processor, across the interface, “Put
this in your repository: John Smith lives in Poughkeepsie.” How
does the processor know there is such a place as Poughkeepsie?
Does it care?

Depending on the kinds of entities involved, and often on the
whims of the people who set up the system, the processor might
go to various kinds of efforts to verify existence. At bottom, they
are really acceptance tests, which may or may not have some
correspondence with existence. What is being tested is the
acceptability of a symbol.

2.4.1 Acceptance Tests: List and Non-List

We can broadly classify the tests as list tests and non-list
tests. For list tests, there is an explicit list of existing elements
with which the symbol can be compared. If it matches, then the
corresponding entity can be presumed to exist.

In practice, such lists tend to be either static or dynamic. A
static list is permanently defined, and is usually incorporated into
the data description rather then occurring in the data itself. They
often occur in the form of rules, e.g., “sex” may be “male” or
“female”. Such rules, occurring in the data description, tend to
be strictly enforced. These static lists can actually be modified,
but that’s exceptional and traumatic.

Dynamic lists occur in the data itself, and they can be
modified by the normal update activity on the data. That is, part
of the normal activity on the data includes inserting and
removing such entities. A dynamic list might simply be a set of
symbols; or it might be a set of objects representing entities, to
which the symbols are associated as names. In conventional
systems, records often play the role of such lists. E.g., a
reference to an employee is acceptable if and only if there is a
record for him in the employee file. Actual practice varies widely
in this respect; various systems enforce such rules to varying
degrees.

38

Non-list tests involve some procedure other than list
checking. The most common forms of these are range checks and
syntactic checks. Range checks require valid values to lie
between specified limits. Syntactic checks are based entirely on
rules governing the composition of the symbol itself; no other
indication of existence or meaning is involved.

Syntactic checking is by far the most common, being the
essential idea behind the specification of data types. Quite often
the only constraint on the acceptability of a symbol is that it must
be numeric, or it must be alphabetic, and often must contain a
specified number of characters. For numeric quantities, such
acceptability is usually an adequate assurance of existence: there
actually does exist a real quantity corresponding to each possible
sequence of digits. But for alphabetic symbols, there is no such
assurance. Symbols are all too often accepted as the names of
people, companies, addresses, states, countries, and so on, with
no test at all for their existence.

For many entity types, any of the existence tests might be
employed in a real system. In practice, tradeoffs are made
between the cost of performing the tests and the cost of
misrepresenting the existence of the entities. The vast majority of
data items in today’s files are subjected (in the information
system) only to syntactic tests, leaving open the possibility of
nonsense references to non-existent entities. While information
systems are supposed to be modeling some aspect of reality,
there does seem to be a very mixed bag of techniques for
synchronizing the system’s perceptions with the actual existence
of things.

2.4.2 An Act of Creation

Entities whose existence is modeled by a list test require an
explicit act of creation. Some overt act is required to establish
the existence of such an entity before other things can be said
about it. E.g., it has to be included in the list of acceptable values
in the entity type definition, or something like the insertion of an
employee record must occur before any other reference to that
employee is permitted.

39

(Real systems vary in the degree to which such semantic
consistency is enforced, especially in regard to deletion. Many
systems will allow references to such an employee to persist in
the data even if the employee record is deleted.)

In contrast, entities defined by non-list tests have a kind of
“eternal” existence. Once the procedure is defined, the entire set
of things acceptable to it exist implicitly. Such entities do not
require an overt act of creation prior to being referenced.

2.4.3 Existence by Mention

I biased things a bit by equating existence with acceptance.
There is a much simpler sense of existence. We could simply be
asking about what things are known to exist at the moment,
rather than the acceptability of a certain symbol. In that case,
Poughkeepsie exists if it happens to be mentioned as someone’s
residence, while London doesn’t if none of our people lives
there.

There are three very different notions of “the domain of
cities” (or “the set of cities”) operative here:

1. The real set of existing cities (ignoring, for the moment,

arguments about historical or fictional cities).
2. The set of cities whose names are acceptable as input

(which includes ZZZZZZZ, together with every other
alphabetic sequence of acceptable length).

3. The set of cities currently mentioned in the computer’s
data (which, in our example, excludes London).

In general, this ambivalence will be true wherever the

acceptance test is limited to a loose syntactic check.

2.4.4 Existence By Implication

If the computer knows the date you were hired and the date
you were fired, it can list all the dates on which you were an
employee. Do those dates “exist” in the machine? We’ll come
back to that in section 2.3.

40

2.5 Records and Representatives

An attempt to provide a regular modeling of the existence of

entities leads to the notion of “representatives”.
The traditional construct that represents something in an

information system is the record. It doesn’t take much to break
down the seeming simplicity and singularity of this construct.
What is a record? In manual (non-computerized) systems, it
could be one sheet of paper, or one card, or one file folder. It
might sometimes have a formal structure and boundaries, like a
printed form (perhaps several pages long, or extending over
several cards). Sometimes it doesn’t have much structure, but
runs on to several pages or cards (consider a library catalog that
has continuation cards), yet with some recognizable convention
for distinguishing one record from another.

The concept of “record” is equally muddy in computer
systems. The term sometimes refers to:

• A geometrically defined piece of storage medium: card,

record within a track on disk, area between blank
portions of tape.

• A quantity of data transferred as one chunk between
external storage media and main storage (sometimes
called a block). This chunk of data generally goes into a
buffer area in main storage, managed by an access
method.

• A quantity of data transferred as one chunk by an access
method between a buffer and an application program.

• Several such chunks, whose contents have some logical
relationship (as in [IMS]).

Sometimes a record is associated with a piece of physical

medium: the first 80 characters on one track are not the same
record as the first 80 characters of another track. Sometimes a
record is associated with its contents: “one” employee record
may exist simultaneously on a punched card, in a spool file on a
disk, in a buffer, and in an application program’s work area.

41

By various rules and conventions, we somehow know how
to call a collection of data “one record” even though:

• It may physically exist in several copies (in main

memory, on one or more auxiliary storage devices ⎯
e.g., a primary copy and a backup copy);

• It may not be physically contiguous (it may be stored in
fragments, e.g., span tracks, on auxiliary storage);

• Its location and content change over time.

Thus, even at this level, we do not have a truly tangible,

physical construct called “record”, but rather we have to deal
with it abstractly. We try to get by with some concept like “a
record is that data which appears in my buffer whenever I submit
a certain key to a certain access method using a certain index”
(and even that is full of holes).

In some uses of the term “record”, its characteristics are
constrained by the processing system (device and media
characteristics, access method) rather than by the information
content appropriate to an application. This might include such
constraints as:

• absolutely fixed length records (e.g., 80-byte card

image).
• declarable but fixed lengths per “record type” or per

“file”.
• upper limits on record lengths.
• fixed number of fields per record.
• fixed length fields.

In general, the record concept grew out of data processing

technology, and reflects many things besides the desire to
represent an entity in a model of information. (More on this in
chapter 8.)

Thus, something that an application might want to deal with
as a “medical record” may not correspond to a single “access
method” record, but to some kind of structured collection of such

42

records. In this sense, the IMS concept of a record (consisting of
a variable number of structurally related segments) is a fairly
good approximation to an application’s concept of a record.

We are after some single construct that we can imagine to
exist in the repository of an information system, for the purpose
of representing a thing in the real world. Beyond grappling with
the definition of “record”, we have another traditional problem to
contend with. In many current information systems, we find that
a thing in the real world is represented by, not one, but many
records. A library book is represented in the catalog by at least a
title card, an author card, and a subject card. A person may be
represented by a personnel record, a health record, a benefits
record, an education record, a stockholder record, etc. In this
latter case, of course, we are viewing all the files maintained by
one company as constituting a single information system.

One objective of a coherent information system (i.e., an
integrated database) is to minimize this multiplicity of records,
for several reasons. In the first place, these various records
usually contain some common information (address, date of
birth, social security number); it takes extra work to maintain all
the copies of this data, and the information tends to become
inconsistent (sooner or later, somebody will have different
addresses recorded in different files). Secondly, new applications
often need data from several of these records.

So, we integrate these various records into one “pool” of
data about an individual ⎯ and thereby introduce several new
concepts of “record”. On the one hand, it might be this pool of
data. On the other hand, it is often used to mean that data which
an application sees, which might bear no simple physical
resemblance at all to the underlying pool of data. A “medical
record” would consist of some subset of data out of this pool,
perhaps collected from scattered physical locations, and
formatted to the requirements of some application.

Well, then. If we can’t pin down “records” to represent
things in the real world, could we somehow use this underlying
pool of data as a representative? Maybe. The problem is that we
would like the representatives of two things to somehow be
cleanly disjoint, to be distinctly separate from each other.

43

Unfortunately, much of the data about something concerns its
relationships to other things, and therefore comprises data about
those other things as well. The enrollment of a student in a class
is just as much a fact about the student as about the class. So, we
can’t draw an imaginary circle around a body of information and
say that it contains everything we know about a certain thing,
and everything in the circle pertains only to that thing, and hence
that information “represents” the thing. Even if we could, the
concept is just too “smeared” ⎯ we need some kind of focal
point to which we can figuratively point and say “this is the
representative of that thing”.

We won’t try to solve this problem. We will simply skirt the
whole issue and continue to use the term “representative”
(borrowing it from [Griffith]; [Hall 76] uses the term
“surrogate”). We need the terminology to develop some concepts
of information representation, without getting too tangled up in
machine processing constructs. In some situations a
representative may correspond to a record, or to a segment
(IMS), or to a row in a relation; sometimes none of these
constructs quite fits the concept of a representative.

Another reason for introducing the term “representative” is
that our topic is broad enough to include systems that don’t even
use the term “record”. In computer catalogs and directories, we
have “entries”, and in data dictionaries we have “subjects”.

Although it is an abstraction, related to a theoretical view of
data and data description, the representative has some definite
properties, some of them reflecting the computer environment
which is its ultimate motivation. The characteristics of a
representative in an idealized repository might include these:

• A representative is intended to represent one thing in the

real world, and that real thing should have only one
representative in an information system. There may be
some controlled redundancy in the physically stored
data, such as duplicate copies of records in order to
optimize different access strategies. That doesn’t violate
this principle, if there is some provision for keeping the
contents of such records acceptably synchronized. Note

44

that we have the corollary concept of information
systems themselves as bounded, disjoint collections.
Something in the real world may have several
representatives in several information systems, but
should have no more than one representative in each.
Note further that this last constraint is a matter of intent,
not definition. Something in the real world may in fact
have several representatives in one information system,
due to that system’s failure to detect the duplication.
This is an error situation that nonetheless can occur. It’s
a familiar headache to welfare agencies: a person
fraudulently drawing benefits under several different
names.

• Representatives can be linked. This is the fundamental
basis for representing information (in addition to the fact
that the representatives exist).

• The information expressed by linking representatives
includes such things as relationships, attributes, types,
names, and rules.

• The kinds of rules that generally need to be specifiable
about representatives include conventions governing
their type, names, existence tests, equality tests, and
general constraints on their relationships to other things.

• For representatives with explicit existence tests, the
representative must be created by an overt operation on
the information system. It does not exist simply because
its counterpart in the real world exists. An information
system may or may not be able to detect the creation of
two representatives for the same thing. It will assume
that two representatives represent two different things.

• The information associated with a representative must be
asserted explicitly to the information system. The system
is not omniscient. (We exclude here information that can
be computed or derived from other asserted
information.) The accuracy and currency of the
information is determined by the assertions.

• It would help to have some mechanism to clearly and
unambiguously indicate what is meant by “one” and “the

45

same” representative. A numbering system would
suffice, wherein each representative is assigned a
number unique within an information system, and
numbers are not re-used after a representative is
destroyed. Whether or not it is provided in a real
implementation, this scheme defines the concepts of
“one” and “same” representative in an information
system. A representative always has exactly one and the
same number, and no other representative ever has that
number. Two references (e.g., names, relationships) refer
to the same representative if and only if they refer to the
same representative number.

46

47

3 Naming

3.1 How Many Ways?

he purpose of an information system is to permit users to
enter and extract information ⎯ about entities. Most

transactions between user and system require some means of
designating the particular entity of interest. In order to design or
evaluate the naming facilities of an information system, it helps
to be aware of the variety of ways in which we designate things.

How do we indicate a particular thing we want to talk about?
Let me describe just a few of the ways I can think of:

• You point your finger. By itself that’s generally

ambiguous, unless there’s something in the context or
conversation to indicate whether you are pointing to a
button, a shirt, the man’s chest, the man, the horse and
rider, or the whole regiment.

Is this relevant? How about pointing a light pen at a

display screen? If you are editing text, there has to be
some way to establish whether you are erasing a letter, a
word, a line, a sentence, a paragraph, or a letter (lovely
ambiguity).

• If it’s a person, you might use his name. Did I say

“name”, in the singular? There are many different
sequences of letters and punctuation that are
recognizable as his “name”. There’s his full name (with
or without Ms. or Dr. or Capt. in front and Jr. or II or
MD or Ph.D. in back); you might omit his middle
name(s), or use only initials for either his first or middle
names, or use only his initials altogether (monogram);
you might use a nickname, or just the initial of his
nickname (I sometimes get memos addressed to B.
Kent); you might address him only by his first name or

T

48

nickname, or by his last name only; and in some cases
you have to give his last name first. And then we have
the curious custom of addressing married women by
their husband’s names: Mrs. Henry Smith.

These are all, of course, ambiguous. People’s names

are generally non-unique. Whether you address a person
by full name, first name, or nickname, there is always
some chance that someone else will respond. We employ
a variety of techniques and assumptions to insure that we
are addressing the right person; sometimes they don’t
work. A newspaper editor in France was the victim of an
assassination plot aimed at a political figure with the
same name.

And what is the syntax of a person’s name?
Certainly far more complex than first name, blank, last
name. There may be periods, commas, blanks, hyphens,
apostrophes (anything else?) in certain places (what are
the rules?). A last name may have embedded blanks, and
may not even start with a capital letter (van den Berg).
With a name like that, do we always know where the
split occurs between first, middle, and last names
(especially if the name is printed in all capitals)? People
can have any number of middle names. Is there any limit
on the length of people’s names?

• Notice that I started that last discussion with “if it’s a

person”. In identifying something, a name may be
meaningless unless you also establish the category of the
thing. What does the name “Colt” identify? It might be a
person, a gun, a car, a beer, a football player, or perhaps
even a city or county somewhere. (Check an atlas?) Of
course, I’m being a little careless here. “Colt” is not the
name of one gun or one can of beer or one football
player. And, if it’s not even clear that I am using a name,
I might just be talking about a horse.

49

Sometimes you can’t tell whether an entity or a
category is being named. Try asking an operator for the
phone number of “The Restaurant” or “The Movie”.

• A thing can have different kinds of names. A person

might be identified by a social security number,
employee number, membership number in various
organizations, military service number, various account
or policy numbers (strictly speaking, these latter don’t
identify him, but something he’s related to; on the other
hand, you might also say that about a social security
number). A car might be identified by license number or
by engine number. A department may have a name
(Accounting) and a number (Z99). A book has a title, a
Library of Congress number, an ISBN (International
Standard Book Number), not to mention various Dewey
decimal identifiers in local library catalogs. And each
copy of a book may have an “accession number”,
assigned locally by a library for their overall inventory
management.

So, to be complete, we may sometimes have to

indicate the kind of identifier being used, in addition to
the identifier itself and the category of the thing. Very
often, but not always, the kind of identifier is implicitly
understood (a social security number is generally
recognizable by its format). Of course, in a data
processing system, there has to be some convention for
indicating which field in the record is to be matched.

• You don’t always have all these options. Very often you

have to know who you’re talking to; that will determine
how you have to identify the thing being referenced. In
addressing mail, you had better include the last name.
For the IRS or a stockbroker, you might have to use
social security number. The personnel file might only be
keyed on employee numbers. If the personnel file can be
addressed by name, there are probably some very

50

specialized rules, e.g., all capitals, last name first
followed by a comma, truncate all names longer than 25
characters, etc. To log on as a user of a teleprocessing
system, you may have to present a special identifier
assigned within that system.

• You might even have a choice of several different names

of the same “kind” for the same thing. A married woman
often retains her maiden name for professional purposes.
People have stage names, pen names, aliases, and
sometimes several nicknames (Chuck and Charley).

A person’s name may have several correct spellings,

especially if it is transliterated from a foreign language.
Look up the composer of “Swan Lake” in several
catalogs.

In Hawaii, last names are often so long that people

just use the first few syllables.
When a book is published or distributed by different

publishers (perhaps in different countries), then the book
may bear several International Standard Book Numbers
(ISBN). [Douque] is an example.

Vacuum tubes often have several numbers
designating the same type of tube.

If you will accept a phone number as the “name” of
a telephone, then we include the possibility of several
names for the same instrument. The phone may also
respond to several “kinds” of names: outside numbers
and internal extension numbers.

Sometimes the alternative names (synonyms) can be
predicted by a rule (algorithm) rather than requiring an
explicit list. Many command systems allow the names of
commands to be truncated from the right. Thus PR, PRI,
and PRIN might all be recognized as synonyms for the
command named PRINT, even if they aren’t explicitly
listed anywhere in the system.

51

The term “synonym” sometimes refers to the
existence of several kinds of names (e.g., employee
number and social security number), and sometimes to
the existence of several names of the same kind (e.g., a
person’s aliases).

• You might refer to someone or something by its

relationship to another identified thing: Charley’s aunt,
Harry’s car, the owner of a certain bank account or
charge account. (How about “Mrs. Henry Smith”?) Such
references may or may not be unique.

• Or by the role currently being played by the thing: the
mailman, the bus driver, the third baseman.

• Or by its attributes: the red car, the highest-paid
employee.

• And certainly by combinations of these: the red car’s
owner’s lawyer. Again, these references may or may not
be unambiguous.

• We often address a letter to a person when we really
want to deal with his role (e.g., manager of a certain
department). If someone else now has his job, we really
want the matter handled by his replacement.

• A name sometimes describes the thing being named.
Sometimes it doesn’t. Main Street may or may not be the
main street in town. It may not be a street at all
(restaurant? clothing store? movie or book?). Does
Scotch Tape come from Scotland? How many
blackboards are black?
When my daughters were very young, they had a toy
they called “Blue Car”. It was a yellow donkey. (Or was
it a toy, and not a donkey? Shall we debate whether the
category of animals includes toys, pictures, statues, and
other imitations of animals? Are you going to insist that
the toy was not a donkey?)

On television one night, the “8 O’Clock Movie”

started at 7 o’clock.

52

And then of course there are code names, which are
deliberately uninformative or even misleading.

• Some names have embedded in them information about

the thing being named. In some states, you can
determine from a license plate the county in which it was
issued, or the fact that the car belongs to a rental or
leasing agency, or to a government agency. An account
number often has the bank branch number included (this
also relates to qualification ⎯ section 3.3.2). Prefixes
very often have special meaning, as in the names of
modules of computer programs.

• When dealing with ambiguity, we sometimes employ a
complex strategy of reducing the number of candidates
to one. Sometimes it is a pre-established strategy, e.g.,
specify name and address, or name and date of birth.
Sometimes we do it in dialog fashion: “Is this the John
Smith who works for IBM?” “Yes, but there are three.”
“Were you at the ACM meeting last week?” And so on.

Some other strategies:

- Take the first one encountered, according to

some ordering. This is the common treatment of
“non-unique keys”. Sometimes this ordering is
determined by an ordering of “scopes”
(discussed below), e.g., catalogs.

- When things are versioned, default reference is
to some “latest” version.

Qualification is an especially important technique,

which will be discussed later.

• We also refer to things by pronouns (you, her, it, that),
which depends on some convention to establish the
object of reference. A common convention is to assume
it to be a previously identified thing. This, too, has its
counterpart in data processing systems. In IMS, for
example, the “replace” function is assumed to refer to

53

the last record that had been retrieved (that’s accurate
enough for this discussion; the precise rule is a bit more
complex).

• Sometimes we refer to something without knowing yet
exactly which thing we are talking about. A mystery
novel refers to “the murderer”; a contest announcement
mentions “the winner”. This is analogous to using
variables in algebra and in programming. (It also bears
some resemblance to roles, and to pronouns. In the case
of roles, we are less likely to care about which individual
is actually playing the role than when we use variable
reference. The distinction between variables and
pronouns does not so readily come to mind.)

• In programming, an important special case of reference
by relationship involves some ordering. With respect to
such an ordering, one can refer to the first item, or the
last, the next, the third, etc. “Next” also involves
pronoun reference, since it implies “next” relative to
whatever item was last referenced.
We make ordinal references to footnotes, bibliographies,
pages, chapters, volumes, editions, etc.

• In programming, “pointing” often means naming some
location in the machine. It is something like pronoun
reference (“that”) in that it involves some convention to
establish what is being referenced, i.e., what is assumed
to be at that location (both its nature and its extent:
character, field, record, control block, etc.).

Which of these phenomena shall we call “naming”? No

answer. It doesn’t matter.
Can we distinguish between naming and describing?
On one hand there is a pure naming or identification

phenomenon: a string of characters serves no other purpose than
to indicate which thing is being referenced. On the other hand we
have information about the attributes of a thing and its
relationships to other things. Of course, the two overlap.

There are very few “pure” identifiers, containing no
information whatsoever about things. A person’s name suggests

54

possible relationships to other people; a first name can indicate a
person’s sex; a name often conveys ethnic clues; it may suggest
something about age or social status; in some forms, it may
indicate profession, or level of education.

The serial number of a part often implies something about
the date or place of its manufacture, or something about the
presence or absence of certain features. Vacuum tube numbers
encode much information about electrical and mechanical
specifications. An International Standard Book Number (ISBN)
encodes publisher, author, title, and type of publication.

3.2 What is Being Named?

Which entity is being named? Consider telephones and
telephone numbers (analogous to message handling in a message
processing system). If, as before, we consider a phone number to
be the name of a telephone, then:

• a telephone may have several names (several numbers

ringing the same phone);
• a given number could ring several phones: the several

extensions in your home, or the phones of a manager and
his secretary;

• phones can change names (numbers): the phone
company replaces a defective telephone, or the phone
company assigns new numbers, or you transfer your
number when you move.

Alternatively, we could invent a new abstract entity, e.g., a

“message destination” (in teleprocessing systems, a “logical
unit”). We then consider one phone number to be the name of
one message destination, and we deal with a relationship
between message destinations and telephones (in teleprocessing,
logical units and physical units). This relationship could be
many-to-many, and can be changed. And it now requires some
method for identifying (naming) the physical telephones
involved.

55

A familiar message again: you the observer are free to
choose the way you apply concepts to obtain your working
model of reality.

3.3 Uniqueness, Scope, and Qualifiers

Whether a name refers to one thing or many frequently

depends on the set of candidates available to be referenced. This
set of candidates comprises a “scope”, and it is often implicit in
the environment in which the naming is done. A reference to
“Harry” is often understood to mean the Harry present in the
room. A letter addressed to Menlo Park (without naming the
state) will probably be delivered in California if mailed on the
West coast, and to New Jersey if mailed on the East coast. The
boundaries of a scope, and the implicit default rules, are often
fuzzy: I don’t know where the letter would go if it was mailed in
Illinois.

Qualification, the specification of additional terms in a
name, is often used to resolve such ambiguities by making the
intended scope more explicit. In this case, adding the state name
would (partially) resolve the ambiguity.

Scopes are often nested, and we often employ a mixed
convention: a larger scope is left implicit, but a sub-scope within
it is explicitly specified. This is partial qualification. There are
cities named “San Jose” in Costa Rica and in the United States.
Let’s imagine that the one in Costa Rica is within a “district”
named California. Then the address “San Jose, California”,
although qualified, is still ambiguous. Whether the letter gets to
its intended destination depends on the “default scope” (i.e.,
country) implied by the point at which it is mailed.

Even the city name is a scope, resolving the ambiguity of a
street address ⎯ University Avenue exists in many cities. And
the street name selects a scope of house numbers. A complete
address is a whole chain of scope qualifiers.

Telephone numbers provide familiar examples of
qualification. A (7-digit) phone number is certainly not unique; it
may exist within many different area codes. Here the boundaries
of the scopes, and the default rules, are well defined. If you don’t

56

dial the area code, the destination is assumed to be within the
area you are dialing from; otherwise you must dial the area code
explicitly. Of course, this is again only an imperfect model of
reality; I can reach many destinations in nearby area codes
without dialing the area code. The first three digits of the seven-
digit number seem to imply something in relation to area codes.

When dialing from an office phone, one often has to select
first from a larger set of scopes: whether you want an outside
line (dial 9), a “tie line” connection (dial 8), or a local extension
(in some places, dial 6; in others, the default in the absence of an
initial 9 or 8).

Incidentally, phone numbers illustrate some kinds of
anomalies that may occur in real naming conventions:

• Different forms of names are valid within different

scopes: for local extensions, they are four digits; for
outside numbers, they are seven digits plus optional area
code; a tie line number could have still another form.

• Form and content (syntax and semantics) are mixed
together. You can’t specify the naming rules independent
of the numbers involved. Certain initial digits are
reserved for certain functions. If the first digit you dial is
zero, then you are addressing the operator, not selecting
a scope (you could fudge that by confusing a scope with
its single member). Certain three digit numbers are valid
destinations, and not part of a seven-digit number (like
411 for information).

• The naming conventions can depend on the scope from
which the naming is done: the phones at another location
may have a different convention for getting outside lines,
local extensions, etc.

If you consider a company’s internal switchboard operator to

be part of the addressing mechanism, then you could think of a
very completely qualified name as consisting of a 9 for an
outside line, an area code and seven digits, followed by a four
digit office extension. Two points:

57

• If you think of the destination switchboard as another
scope, then here again different scopes may accept
different names: some companies have 3-digit
extensions, some use four, etc. Furthermore, many kinds
of names and descriptions are acceptable within the
switchboard’s scope: extension numbers, people’s names
or roles (“personnel manager, please”), names or
descriptions of departments (“shipping, please”), etc.

• The scope itself may have multiple synonymous
names: the company may have several numbers that
ring at its switchboard.

To elaborate on an earlier point: the same thing might have
different names when referenced from different scopes:

• Phone numbers, as mentioned above.
• Programs, files, etc. might be registered in different

catalogs with different names (don’t know if any current
systems support this).

• Users of the IBM Virtual Machine Facility (VM) will
recognize this: I can get access to the disk you call 191
and call it 193 myself (when I have another disk which I
call 191).

In this case, the name does not go with the entity, but is an
“attribute” of the relationship between the entity and the scope
(i.e., it goes with the directory entry).

3.3.1 Deliberate Non-Uniqueness

Quite often, things don’t have individual unique names. This
poses no problem when the things aren’t individually represented
in the system. In the case of parts, for example, we have one
named representative for a type of part; the existence of
individual instances is reflected only in the “quantity on hand”
attribute.

Consider, however, something like a table of organization for
a military unit. There may be several slots for clerks, with each
slot having the same job description and skill requirements. We
want them separately represented; they are the permanent entities

58

in this structure. One of the attributes (or relationships) we want
to record for them is the name of the person currently holding the
position. When the positions are vacant, the information
associated with the entities is identical. When we want to address
one of them, e.g., to assign someone to a job, it is sufficient to
refer to “any one of the vacant clerk positions”. For this kind of
information, the entities do not require unique identification.

It is sometimes asserted that each entity represented in the
system must have a unique identifier. I contend that this is a
requirement imposed by a particular data model (and it may
make many things easier to cope with), but it is not an inherent
characteristic of information.

3.3.2 Effective Qualification

A scoping object does not have to have any intuitive
connotations of “scope”. It need not be a physical region, or a
catalog, or an area code. Quite often, the technique for giving
something a unique qualified name is simply based on an
arbitrary relationship to some other object. In effect, the scope
becomes the set of things having a particular relationship to a
particular object.

Consider, for example, the naming of employees’ dependents
by the two fields consisting of the employee identification
number plus the dependent’s first name (the example is taken
from [Chen]). In order for such a convention to be effective, a
number of conditions must be satisfied.

Uniqueness Within Qualifier

The relationship must confer uniqueness of simple name
within relative (i.e., the employee must not have two dependents
with the same simple name). Curiously enough, even this might
not hold for the given example. A pathological case would occur
if the employee had several children with the same name (or is
that in fact plausible with adopted children? or after
remarriage?). More reasonably, his wife and daughter might have

59

the same name, or his father and son (and grandson, if he was an
eligible dependent).

Singularity of Qualifier

The relationship does not actually have to be one-to-many
for naming purposes, so long as the previous constraint on
uniqueness holds for each relative. Thus a person could be a
dependent of several employees, and still be uniquely
identifiable, so long as no employee has two dependents with the
same first name.

However, this situation does give rise to synonyms: a given
dependent could be identified by qualification by any of his
related employees. This could lead to a number of problems,
such as determining when two references to dependents were
really references to the same person. And also: when a new
employee lists his dependents, how shall we know if any of those
dependents are already recorded as dependents of other
employees? (Do we add new dependent records, or add
synonyms to existing records?)

To avoid such problems, one could require that the identifier
have no synonyms. Then dependents could no longer be
identified via their related employees ⎯ unless we wanted to
deny the reality that a person might be a dependent of several
employees.

Another alternative is to require that one of the synonyms be
designated the “primary” identifier, being the only one permitted
to be used in referring to that dependent. With this constraint we
lose usefulness and naturalness. How do we know which
employee to use in referring to a dependent? If an employee asks
me to add one of his dependents to some list, I first have to find
out whether I might have to use some other employee’s number
to form the dependent’s identifier. If I have to do that lookup in
the dependent’s record, I might as well be getting some arbitrary
identification number out of it instead of bothering with qualified
names. And this convention doesn’t solve the problem of change.
If a dependent’s “primary” employee leaves the company, and
another relative still works there, then all references to the

60

dependent will have to be modified to reflect a different primary
employee in his qualified name.

Existence of Qualifier

A qualifier must exist for each entity occurrence. Therefore the
relationship must not be optional; each dependent must have a
corresponding employee. If the benefits program were expanded,
let’s say as a charitable community service, to cover needy
people unrelated to any employee, then this system of entity
identification would no longer work.

Invariance of Qualifiers

Such a relationship must really be invariant (unmodifiable).
The relationship constitutes information that is redundantly
scattered about everywhere that this entity is referenced, with the
potential for enormous update anomalies if the information can
change. (Qualified names thus violate the spirit, if not the letter,
of relational third normal form [Codd 72], [Kent 73].) Even this
requirement might not be satisfied by the example cited. For tax
purposes, two married employees might wish to change which
one of them claims which children as dependents; such a change
would have to be propagated into the qualifiers in every single
reference to those children.

3.4 Scope of Naming Conventions

The oil well problem: some oil wells, but not all, have “API”

codes assigned by the American Petroleum Institute. Oil
companies assign their own names to the wells they own, using
their own conventions and formats. Some wells are jointly
owned, with each owning company naming the well according to
its own rules.

In a database to be used for correlating data on all wells in
some area, no single naming convention would apply to all the
wells. The API code works for those wells that have them.
Otherwise, you have to know who the owner is (or which

61

owner’s convention is being used, for jointly owned wells)
before you know the applicable name format. When one
company writes an application looking only at its own wells, it
would like to see and use its own names. A second company’s
application would like to see and use that company’s names,
even when some of the same wells are involved.

The common solution: develop a brand new naming system
(keys) for all wells represented in the database. Now everybody
has to learn a new set of names, and correlate them with the ones
they already know. And the headache will recur when several
such databases are integrated.

(Lots of people don’t have social security numbers ⎯ such
as the employees of a multi-national corporation.)

3.5 Changing Names

Names do change: people, streets, cities, nations, companies,
divisions, departments, programs, files, projects, books, other
publications. Part numbering systems change once in a while.
Mistakes get corrected.

In the references at the end of this book, SIGFIDET and
SIGMOD are the old and new names of the same organization.
Did you know that?

How (and how long) do you detect and handle references to
the old names? Is this similar to synonyms?

The common solutions: either disallow name changes
(pretend they don’t happen), or generate a new naming scheme
for the data system and treat the other (changeable) names as
attributes. The latter solution has a price, of course: increased
space required for storing and indexing the additional names,
learning and processing problems in dealing with new,
“unnatural” names; possible loss of “key” facilities of some
access methods (e.g., if secondary indexing weren’t available).

Systems that depend on symbolic associations for paths (e.g.,
the relational model), as opposed to internal “unrepresented”
paths between entities, cannot readily cope with changing names
[Hall 76]. That is a fact; we might, however, debate whether it is
a fault or a virtue.

62

When name changes are disallowed by the system, one can
trick the system by deleting the entity, and then inserting it again
as a “new” entity under its new name. Unfortunately, it is
sometimes very difficult, if not impossible, to discover all the
attributes and relationships associated with the old entity, so that
they may be re-established for the new entity. And sometimes
deletion and insertion might have undesirable semantic
implications of their own, enforced by the system and perhaps
unknown to the application that is trying to change a name. This
technique for altering an employee’s identifier could enter a
spurious firing and re-hiring into his employment history.

3.6 Versions

Quite often several versions of a thing are available,

reflecting the status of the thing after various changes. The thing
might be a document (e.g., various printings or editions of a
book), a program, or a set of data records. (When data records
are kept on magnetic tape, the traditional way to update the data
is to rewrite it all to a new tape, incorporating the desired
changes in the process. It is common practice to retain several
“generations” of such tapes, for backup and error recovery
purposes.)

The central problem with the version concept is that we can’t
decide whether we are dealing with one thing or several. “The
payroll program” is a singular concept, and a command to
execute it is implicitly understood to refer to “the current
version”. On the other hand, one sometimes refers explicitly to
an old version; for example, in order to reconstruct how a certain
error occurred last month, one may want to rerun the version of
the program that was current then. In this context, we are
explicitly aware of the several versions as distinct entities, and
have to specify the desired version as part of the naming process.

63

3.7 Names, Symbols, Representations

What is a name but a symbol for an idea? What essential
difference is there between “Kent” and “25” and “blue”, other
than that they name different things?

3.8 Why Separate Symbols and Things?

3.8.1 Do Names “Represent”?

In linguistics, a symbol is itself a representative of the thing
it names. We have no choice; there isn’t anything else. In the
conventional linguistic view of verbal communication (written
and spoken), including our normal communications with
computers, we have nothing else except character strings to
represent the things we are communicating about. This leads
some people to conclude that we must use such symbols as the
representatives of entities.

But in a modeling system, we do have an alternative. We can
postulate the existence of some other kind of object inside a
modeling system that acts as the representative (surrogate) for
something outside the system. There “actually” is something in
the system (a control block, an address in virtual memory, or
some such computer-based construct) which can stand for a real
thing. Once we’ve done that, we can talk about the symbols that
name a thing separately from the representative of that thing.

Does this have any counterpart in our own experiences? Do
we ever use anything besides words for communicating? Do we
ever use pictures?

Consider the way we often use graph-like diagrams to
supplement verbal communication, to help cope with synonyms
and ambiguities in symbols. Even the authors who want us to use
symbols exclusively use such diagrams in their own papers. Our
thing object is essentially a node on a graph, before any label has
been written in it. We can decide what that node stands for
before we write any labels; we then have a variety of options for

64

choosing the label, and we may even change the label at various
times. The same label might also occur on another node, but then
we know it stands for something else. Or we might not write any
label, because we can refer to it by its relationships to other
nodes. But through all this, it is the node that has constantly been
the representative of a certain thing, independent of the labeling
considerations.

This is not to say that we can do without character strings.
They are absolutely indispensable in describing and referring to
what is being represented and linked. What we have done is to
shift the primary responsibility for representing things away
from character strings and onto a system of objects and links.
Then we use character strings for description and
communication. This shift of responsibility gives us greater
freedom in how we use the character strings, and helps us escape
a multitude of problems rooted in the ambiguity and synonymity
of symbols.

This idea of taking the label out of the node, of treating an
object separately from the various symbols with which it might
be associated, should be exploited for a number of reasons:

• We can cope with objects that have no names at all (at

least in the sense of simple labels or identifiers). We can
support other ways of referring to an object, e.g., via its
relationships with other objects.

• The separation permits symbol objects to be introduced
and described (constrained) in the model, independent of
the objects that they might name. One can thus introduce
the syntax of data types, social security numbers,
product codes, etc. (This is relevant to a certain level of
information validation, independent of questions of
implementation or internal representation.)

• Naming rules can be expressed simply in the form of
relationships between thing types and symbol types.

• Other useful relationships might be expressed among
symbols: synonyms, abbreviations, encodings,
conversions.

65

• Various kinds of relationships might exist between
things and strings:
- Present name vs. past.
- Legal name vs. pseudonym, alias, etc.
- Maiden name vs. married name.
- Primary name vs. synonym.
- Name vs. description.
- Which name (representation) is appropriate for

which language (or other context). This could be
useful in multi-lingual environments, such as the
UN, the EEC, multinational corporations, and
countries such as Canada, Switzerland, and Belgium.

• The structures of names can be distinguished from the
structure of an object. For example, a particular day,
such as the day on which you were born, is a single
concept, a single entity. Its names, however, come in
various forms. Most of the conventional notations take
three fields; in Julian notation, however, it occupies one
field. (And something else to think about: is the
representation of a date in years, months, and days really
all that different from representing a length in miles,
feet, and inches?) Thus we should generally avoid
confusing the structure of an object with the structures of
its names.

• The separation permits differentiating between different
types of names for a given thing, e.g., person name,
employee number, social security number. Such types
are themselves a normal part of the information structure
available from the model.

• By distinguishing sets of things from sets of signs, we
can avoid confusing several kinds of assertions:
- Assertions about real things: “every employee must

be assigned to exactly one department”.
- Assertions about signs: “a department code consists

of a letter followed by two numbers”.
- Assertions relating things and signs: “a department

has exactly one department code and one department
name”.

66

3.8.2 Simple Ambiguity

“It all depends on what you mean by ambiguity.”
We mustn’t neglect the plain and familiar ambiguities, which

make their own large contribution to our communication
confusion. Most words simply do have multiple meanings; we
can’t escape that. Some comments and corollaries:

• As evidence of the multiplicity of meanings, simply

consider the average number of definitions per word in a
dictionary. Then extend that to include all kinds of
dictionaries, e.g., glossaries of specialized terms. Then
add in the undocumented varieties of jargon used in
various specialties. And include all the times a technical
article begins by defining the terms it will use. And
allow for variations in usage in different parts of the
country, and in different countries. And slang, and
metaphor.

• Ambiguity appears to be inevitable, in an almost
mathematical sense, if we consider the relative
magnitudes of the set of concepts and the set of words.
The set of concepts that might enter our minds appears
to be quite infinite, especially if we count every shade of
meaning, every nuance and interpolation, as a separate
concept. On the other hand, the number of words of a
reasonable length (say, less than 25 letters) which can be
formed from a small finite alphabet is quite small in
comparison. It seems inevitable that many of these
words would have to be employed to express multiple
concepts.

• “...fuzziness, far from being a difficulty, is often a
convenience, or even an essential, in communication and
control processes. It might be noted that in ordinary
human communications, the ability to stretch and modify
word meanings is essential. There are many more
situations occurring in life than we have ready-made tags
for. Even so simple a word as ‘chair’ has all kinds of
readily visible complexities in its use. It has ambiguity,

67

in that it has more than one distinct area of application
(in addition to the usual, we have ‘Would the chair
recognize my motion now?’ and ‘Would you like to chair
this meeting?’). Vagueness (or fuzziness) is closely
related to generality, the possibility of referring to more
than one object. In fact, without generality, language
would be almost impossible. Imagine if we had to give
each chair a new proper name before we could talk about
it! As far as ‘stretchiness’ is concerned, note that some
people make a living designing objects they call ‘chairs’,
but in which other people might sit with only the greatest
reluctance. The concept of ‘chair’ is constantly evolving,
in fact” [Goguen].

• The complexity of legal jargon testifies to the difficulty
of being precise and unambiguous.

• Observe the number of puns and jokes that depend on
ambiguity (“walk this way”).

• If you listen carefully, you will discover all kinds of
ambiguities occurring continuously in your daily
conversations. If you listen too carefully, it could drive
you out of your mind. Consider:
- When a receptionist directs you to “go through the

same door as you did yesterday”, she refers to
doorway, not the door. Would you care if carpenters
had replaced the door in the meantime? Or the
doorframe?

- “Turn left at the second traffic light” means you
should turn left at the second intersection that has
traffic lights. The first such intersection probably has
two traffic lights itself.

• Why should we expect the language which describes a
customer’s business to be any better understood or less
ambiguous than the language which describes our own?
Data theorists are ready to argue about any of the
following words and phrases: data, database, data bank,
database administrator, information system, data
independence, record, field, file, user, end user,
performance, navigation, simplicity, naturalness, entity,

68

logical, physical, model, attribute, relationship, relation,
set, integrity, security, privacy, authorization,

3.8.3 Surrogates, Internal Identifiers

Some alternative models suggest that some sort of an
internal construct be used to represent an entity, acting as a
“surrogate” for it ([Hall 76]). This surrogate would occur in data
structures wherever the entity is referenced, and naming
problems would at least be isolated by keeping structured or
ambiguous identifiers off to one side, outside the structures
representing attributes and relationships.

Since these surrogates must eventually be implemented
inside the computer in some form of symbol string, it is
sometimes held that such surrogates are themselves nothing but
symbols.

It is useful to be aware of some fundamental differences
between surrogates and ordinary symbols:

• A surrogate need not be exposed to users. Only ordinary

symbols pass between user and system. In concept,
models involving surrogates behave as though a fact
(e.g., the assignment of an employee to a department)
was treated in two stages. First, the surrogates
corresponding to the employee and department
identifiers are located (i.e., name resolution). Then the
two surrogates are placed in association with each other,
to represent the fact.

• Users do not specify the format, syntax, structure,
uniqueness rules, etc. for surrogates.

• Surrogates are globally unique, and have the same
format for all entities. The system does not have to know
the entity type before knowing which entity is being
referenced, or before knowing what the surrogate format
will be.

• Surrogates are purely information-free. They do not
imply anything about any related entities, nor any kind
of meaningful ordering.

69

• A surrogate is intended to be in one to one
correspondence with some entity which it is
representing. In contrast, the correspondence between
symbols and entities is often many-to-many.

• Surrogates are atomic, unstructured units. E.g., there is
never a question concerning how many fields it
occupies.

3.9 Sameness (Equality)

3.9.1 Tests

A counterpart of the existence test of section 2.4 is the
equality test. When shall two symbol occurrences be judged to
refer to the same entity? (We mean “symbol” broadly in this
context to include phrases, descriptions, qualified names, etc.) In
general, different modes are applicable to different entity types.
It is as much a specifiable characteristic as the naming
conventions themselves.

We can describe several kinds of equality tests: match,
surrogate, list, and procedural.

A match test is based on simple comparison between the
symbols. They are judged to refer to the same entity if and only
if the symbols themselves are the same (by whatever rule
sameness is judged, with regard to, e.g., case, font, size, color,
etc.). Addresses are typically treated in this way; any variation in
the character sequence implies unequal addresses.

In a surrogate test, each symbol is interpreted to refer to
some surrogate object (e.g., a record occurrence). If both
symbols refer to the same surrogate, the symbols are judged
equal. (Following [Abrial]: “Equality always means identity of
internal names.”)

A list test involves a simple list of synonyms. E.g., they
might indicate which color names are to be considered
synonymous (crimson and vermilion might occur together in one
company’s list, but not in another’s), or give the various forms of

70

abbreviation for a given term. If the two symbols occur in the
same list, they are judged equal.

A procedural test involves some other arbitrary procedure by
which the two symbols are judged equal. These are most often
performed in relation to numeric quantities.

It is not generally acknowledged that equality tests for
numeric quantities exhibit much the same characteristics as
equality tests for non-numeric symbols. For numeric quantities, a
number of factors are generally involved:

• The quantities are more likely to be judged equal if they

were initially named by the same “conventions”, i.e.,
measured and recorded with the same precision.

• The quantities need to be “converted” into common units
of measure, data types, representations, etc. These are, in
effect, replacing the original symbols with procedurally
determined synonyms.

• Compare the two symbols. In many cases, the quantities
only have to match within a certain tolerance (“fuzz”) to
be judged equal. This is another procedure for
recognizing synonymous symbols, effectively similar to
explicit lists of synonyms (considering crimson and
vermilion to be equal is really a form of fuzz; to some
people the difference in those two colors is significant).

There is certainly some interaction between the forms of the

equality tests and the existence tests. Not all of the equality tests
are applicable to entities subject to each of the existence tests.

3.9.2 Failures

When equality is based on symbol matching, several kinds
of erroneous results can arise.

• If things have aliases, then equality will not be detected

if two different names for the same thing are compared.

71

• If symbols can be ambiguous (name several things), then
spurious matches will occur. Different things will be
judged to be the same, because their names match.

(When qualified names are involved, another kind of

spurious match can occur ⎯ see section 8.8.3.)
These concerns are especially relevant when attempting to

detect implicit relationships based on matching symbols.
In general, when aliases are supported, we have to know:

• When two symbols refer to the same thing.
• Which symbol(s) to reply in answer to questions.
• Whether use of a new symbol implies a new object or a

new name for an existing object.

72

73

4 Relationships

elationships are the stuff of which information is made.
Just about everything in the information system looks like

a relationship.
A relationship is an association among several things, with

that association having a particular significance. For brevity, I
will refer to the significance of an association as its “reason”.
There is an association between you and your car, for the reason
that you own it. There’s an association between a teacher and a
class, because he teaches it. There’s an association between a
part and a warehouse, because the part is stored there.

Relationships can be named, and for now we will treat the
name as being a statement of the reason for the association
(which means we will sometimes invent names which are whole
phrases, such as “is-employed-by”). As usual, we have to be
careful to avoid confusion between kinds and instances. We often
say that “owns” is a relationship, but it is really a kind of
relationship of which there are many instances: your ownership
of your car, your ownership of your pencil, someone else’s
ownership of his car. I will often (but not consistently) use the
unqualified term “relationship” to mean a kind, and add the term
“instance” if that’s what is meant. So, to be precise, our opening
definition was of a relationship instance. A relationship then
becomes a collection of such associations having the same
reason.

Note that the reason is an important part of the relationship.
Just identifying the pair of objects involved is not enough;
several different relationships can exist among the same objects.
Thus, if the same person is your brother, your manager, and your
teacher, these are instances of three different relationships
between you and him.

R

74

4.1 Degree, Domain, and Role

We have so far looked only at relationship instances
involving two things. They can also be of higher “degree”. If a
certain supplier ships a certain part to a certain warehouse, then
that is an instance of a relationship of degree three. If that
supplier uses a certain trucking company to ship that part to that
warehouse, then we have a fourth degree relationship.

We must distinguish between “degree” and a confusingly
similar notion. If a department employs four people, we might
view that as an association among five things. If another
department employs two people, we have an association among
three things, and we couldn’t say in general that the “employs”
relationship has any particular degree.

We proceed out of this dilemma in several steps. As a first
approximation, think of a relationship (not an instance) as a
pattern, given as a sequence of categories (e.g., departments and
employees). An instance of such a relationship then includes one
thing from each category (i.e., one department and one
employee). The degree of such a relationship would then be the
number of categories in the defining pattern. What we have done
is to reduce the “employs” relationship from being an association
between one department and all of its employees to being an
association between one department and one of its employees.
Although the former is certainly a legitimate relationship, it is
difficult to subject it to any definitional discipline. We will only
deal with relationships in the latter form.

It is also possible to think of the relationship between a
department and all its employees as a relationship between two
things, where the second thing is the set of employees in the
department. This introduces a new construct, namely the set of
employees as a single object, and the relationship is now
indirect: employees belong to the set, and the set is related to the
department. We will not pursue this alternative.

Specifying the pattern of a relationship as a sequence of
categories is sometimes too restrictive. There are many
relationships that permit several categories to occur at the same
“position”, as is the case when one can “own” many kinds of

75

things. We therefore introduce the term “domain” to designate all
the things that may occur at a given position in the relationship.
A domain may include several categories. Thus we might
describe an “owns” relationship as having two domains, with the
first domain including such categories as employees,
departments, and divisions, while the second domain included
such categories as furniture, vehicles, stationery supplies,
computers, etc.

“Domain” and “category” could be treated as the same
concept if (1) we are dealing with a system which permits
overlapping categories, e.g., unions and subsets; (2) the system
does not impose intolerable performance or storage penalties for
maintaining many declared categories; and (3) it doesn’t bother
our intuitions to think of all owners of things as a single kind of
entity, and all owned things as another single kind.

One final improvement in the specification of relationships
makes the specification more informative and less formally
structured. Instead of assigning a domain to a sequential position
in a pattern, we can give it a unique “role” name describing its
function in the relationship, such as “owner” and “owned”. Thus
a relationship can be specified as an unordered set (rather than a
sequential pattern) of unique role names. The number of role
names is the degree of the relationship. A domain is specified for
each role.

Role names are especially useful when several roles draw
from the same domain. A “manages” relationship would be
defined over the roles “manager” and “managed”, both drawing
from the domain of employees.

4.2 Forms of Binary Relationships

Much of the information in an information system is about

relationships. However, most data models (e.g., the relational
model, IMS hierarchies, DBTG networks) do not provide a
direct way to describe such relationships, but provide instead a
variety of representational techniques (record formats, data
structures). Implicit in most of these, and in the accompanying
restrictions in the data processing system, is the ability to support

76

some forms of relationships very well, some rather clumsily, and
some not at all.

In order to assess the capabilities of a data model, it would
help to have some systematic understanding of the various forms
of relationships that can occur in real information. In the next
few paragraphs I will discuss some significant characteristics of
relationships. A particular “form” of a relationship is then some
combination of these characteristics. A method for assessing a
data model would include a determination of which forms it
supported well, poorly, or not at all. Note the emphasis on
combinations. In most data models you can probably manage to
find a way to obtain most of the following features, taken one at
a time. The challenge is to support relationships having various
combinations of these features.

By “support”, I mean that

• the system somehow permits a constraint to be asserted

for the relationship (e.g., that it is one-to-many), and
• the system thereafter enforces the constraint (e.g., will

not allow the recording of an employee’s assignment to
more than one department at a time).

Such support is often implicit in the data structure (e.g.,

hierarchy), rather than being declared explicitly.
The set of characteristics listed below is probably

incomplete⎯I imagine it will always be possible to think of
additional relevant criteria. For simplicity, we are now only
considering “binary” relationships, i.e., those of degree two.
Most of the concepts can be readily generalized to “n-ary”
relationships (those of any degree).

4.2.1 Complexity

Relationships might be one-to-one (departments and
managers, monogamous husbands and wives), one-to-many
(departments and employees), or many-to-many (students and
classes, parts and warehouses, parts assemblies). The
relationship between employees and their current departments is

77

(typically) one-to-many, whereas the relationship between
employees and all the departments they have worked in (as
recorded in personnel history files) is many-to-many.

Another way to characterize complexity is to describe each
direction of the relationship separately as simple (mapping one
element to one) or complex (mapping one element to many). The
terms “singular” and “multiple” are also used. Thus “manager of
department” is simple in both directions; “manager of employee”
is simple in one direction and complex in the other. Relative to
the number of “forms” of relationships, this would count as four
possibilities, since a given relationship might be simple or
complex in each direction.

One advantage to this latter view is that it corresponds well
with certain aspects of data extraction. Very often a relationship
is being traversed in one direction (e.g., find the department of a
given employee); the data processing system usually has to
anticipate whether the result will contain one element or many
(e.g., whether an employee might be in more than one
department). The complexity of the reverse direction is of little
concern (i.e., whether or not there are also other employees in
the department).

Thus, if a given direction is complex, it doesn’t matter much
whether the relationship is 1:n or m:n. If the direction is simple,
the distinction between n:1 and 1:1 may be immaterial.

It’s amusing to note that the relationship between postal zip
codes and states in the USA is almost many-to-one, so that the
zip code directory is organized hierarchically as zip codes within
states. The relationship is really many-to-many, but there are
only about four zip codes that actually span state boundaries. The
post office copes with that by listing the exceptions at the front
of the directory.

4.2.2 Category Constraints

Either side of a binary relation might be constrained to a
single category, constrained to any of several specified
categories, or unconstrained (three possibilities on each side, for
a total of nine combinations). Constraint to a single category is

78

probably the most common situation, as in the examples above
under “Complexity”.

Constraint to a set of categories occurs, for example, when a
person can “own” things in several different categories, or when
the owner might be a person, department, division, company,
agency, or school. This case might be avoided by defining one
new category as the union of the others ⎯ if you’re dealing with
a data model which permits overlapping categories.

It is hard to think of a relationship that is naturally
unconstrained as to category (i.e., one that applies to every kind
of thing), but it often makes sense to handle a relationship that
way in a real data processing system. Perhaps the relationship
does happen to apply to all of the things represented in this
particular database, or to so many of them that it isn’t worth
checking for the few exceptions. Perhaps the installation doesn’t
want to incur the overhead of enforcing the constraint, and trusts
the applications to assert only sensible relationships. Or, the
system simply may not provide any mechanism for asserting and
enforcing such constraints.

4.2.3 Self-Relation

Three possibilities:

• The relationship is not meaningful between things in the
same category.

• Things in the same category may be so related, but a
thing may not be related to itself.

• Things may be related to themselves.

The first case is again probably the most common. The

second occurs, for example, in organization charts and parts
assemblies. Examples of the third are our representatives in
government (the representative is one of his own constituents),
and canvassers for fund drives (the canvasser collects from
himself).

79

Incidentally, I am thinking here of the simple case where
categories are mutually exclusive. When categories overlap, as in
subsets, things may be more complicated.

4.2.4 Optionality

On either side of the binary relationship, the relationship
might be optional (not everybody is married) or mandatory
(every employee must have a department). I will count this as
four combinations (two possibilities on each side), although
there could conceivably be more: one of the domains may
include several categories, with the relationship being optional in
some categories and mandatory in others.

4.2.5 The Number of Forms

Even with this limited list of characteristics, we already have
432 forms (4 x 9 x 3 x 4). This number might include some
symmetries, duplicates, and meaningless combinations, but after
subtracting these we still have a sizable checklist.

4.2.6 Multiplicity of Relationships

Another important criterion concerns whether and how the

system permits more than one relationship over the same pair of
domains. The nature of the support often varies according to the
forms of the relationships involved.

4.2.7 Examples

A sampling of a few forms and how they are handled in
some data models.

For instance: certain cases can only be implemented in IMS
using logical relationships (intersection records), e.g., self
relation, or multiple relationships over the same domains. These
cases cannot also be constrained to be one-to-many relationships,
since they are no longer part of a single hierarchic structure.

80

Consequently, that most elementary of structures, the
homogeneous hierarchy (like an organization chart), cannot be
represented in IMS (or DBTG, for similar reasons).

Also, there is no way to enforce a one-to-one relationship in
IMS, except by representing both entities within the same
segment. Then it becomes difficult to change the relationship, or
to make it optional ⎯ and you can’t have an application that
looks at one entity without the other.

Some systems (e.g., [IMS], [DBTG]) require 1:n
relationships to have only a single category on the “parent” or
“owner” side of the relationship. Consider a 1:n relationship that
naturally has parents in several categories (e.g., suppose that
items of capital equipment may be owned by departments or
divisions, but not both). It is sometimes suggested that such a
relationship can be modeled as the composition of several 1:n
relationships, one for each parent category (e.g., one relationship
for things owned by departments, and another for things owned
by divisions). This doesn’t usually work, however, because it is
difficult to prevent an item from having a parent in each of these
relationships (i.e., that data structure would erroneously permit a
piece of equipment to be owned by a department and a division
at the same time). Furthermore, this approach creates an
unnatural situation by replacing one natural relationship with two
artificial ones. One can no longer ask “Who owns this
equipment?” One now has to engage in a stilted dialogue:
“Which department owns this equipment? None? Oh, then which
division owns it?”

4.3 Other Characteristics

There are a number of other characteristics of relationships

that might be worth describing to an information system. (We are
still looking only at binary relationships.)

4.3.1 Transitivity

For some relationships, if X is related to Y and Y is related to
Z, then X is automatically related to Z. This is true of ordering

81

relationships (less than, greater than) and equivalence
relationships (equal to, has same manager as). This characteristic
is only meaningful when both domains of the relationship
include the same category.

4.3.2 Symmetry

For some relationships, X being related to Y implies that Y
has the same relationship to X. This is true of equivalence
relationships and also, for example, “is married to”. (In the latter
case, both domains are “people”. The relationship “is the
husband of” between the categories of men and women is not
symmetric.) Again, symmetry is only meaningful when both
domains include the same category.

It’s worth confessing that purely symmetric relationships
only fit awkwardly into this general structure of relationships. In
the first place, the two roles (as well as the two domains) are
identical. In the “is married to” relationship, the role on both
sides is “spouse”, just as the domain on both sides was “people”.
Thus we can no longer equate “degree” with the number of
(distinct) roles. Also the “pattern” notion we used earlier doesn’t
fit quite as neatly. That was based on a concept of ordered pairs,
where each position had some significance. Here we are really
dealing with unordered pairs; the information is identically the
same no matter which way the pieces are ordered. Saying that A
and B are married is identically the same as saying that B and A
are married. Few systems really support symmetric relationships;
any that do are likely to require both pairs to occur, even though
they are redundant.

Another difficulty is that the concept of “degree” is less
clear. If the relationship is not limited to being between two
people (and “sibling” isn’t), then we can’t really appeal to an
intuitive notion of “pattern” to establish the notion of degree.
The relationship might more naturally be viewed as one of
varying degree, depending on the number of siblings in a given
family. Nonetheless, we find it much more convenient to
consider the relationships between people two at a time, and
regularize this as a binary relationship.

82

4.3.3 Anti-symmetry

For some relationships, if X is related to Y, then Y cannot
have the same relationship to X. Examples include “is manager
of”, “is parent of”, and total orderings. (“Less than or equal” is a
partial ordering, which permits some symmetries; “less than” is
a total ordering, which is anti-symmetric.)

4.3.4 Implication (Composition)

A relationship may be defined as the composition of two
others, i.e., the occurrence of two relationships implies a third.
For example, if an employee works for a certain department and
that department is in a certain division, then that employee
belongs to that division. Or, one relationship may imply another:
“is the husband of” implies an “is the wife of” relationship. The
converse implication may or may not hold.

4.3.5 Consistency (Subset)

A certain kind of consistency between relationships might be
obtained by defining one to be a subset of another. For example,
the relationship between employees and their current
departments is a subset of the relationship between employees
and all their departments, as recorded in the personnel history
file.

4.3.6 Restrictions

A variety of restrictions might be specified (cf. [Eswaran],
[Hammer]). There may be a limit on the number of things that
one thing can be related to (maximum department size). One
relationship might require another to be true (an employee’s
manager must be in the same division, or must have a higher
salary). It may be invalid to “close a path” (i.e., a part can’t be a
component of any of its sub-assemblies).

83

4.3.7 Attributes and Relationships of Relationships

An instance of a relationship might have attributes of its
own, such as when it was established (date of assignment to
department). And it can itself be related to other things. This will
come up again later.

4.3.8 Names

Relationships have names, and could be subject to the

general variety of naming conventions.
The names of relationships comprise valid information. An

information system should be able to answer questions like:
• What relationships exist between x and y?
• In what relationships is x involved?

4.4 Naming Conventions

I tend to use one convention for naming relationships, but

there are several others in use as well, and each of them seems to
be more natural in certain cases. The conventions involve the use
of zero, one, or two names for the relationship.

4.4.1 No Name

If we are speaking of an employee and mention
“department”, it can be recognized as a reference to the
department to which the employee is assigned.

The convention is that, from a given entity, one traverses a
relationship (selects a path) by naming the domain at the other
end.

That works whenever (1) the relationship is binary, (2) the
two domains are distinct, and (3) there is only one relationship
between those two domains, or there is a convention for
selecting one of them as a default.

This convention could be viewed as a degenerate form of the
two-name convention (below), where each path has a name

84

derived from the target domain. E.g., “department of” is the
name of the path from employee to department.

4.4.2 One Name

The relationship may be given a single, neutral name such as
“assignment” or “inventory”. If we want to find a person’s
department, we ask about “assignment of person”; if we want to
find the people in a department, we ask about “assignment of
department”.

This is a common convention, and one that I tend to use, but
it doesn’t correspond well with most of our language habits; we
usually tend to use different words for the two directions of the
relationship. Furthermore, if the two domains are the same, then
the convention only works if the role names are mentioned.

This convention could include the no-name case, if a
defaulting mechanism were provided whenever the relationship
name was omitted.

This convention is the one that extends best to n-ary
relationships. Instead of getting involved with all the
combinations of pairwise directions between the domains, one
simply names the relationship and values in some set of
domains, and expects as an answer all the combinations of
values which exist with them in the other domains. For example,
if a ternary relationship between parts, warehouses, and suppliers
is given a single name such as INVENTORY, then questions can
be written symmetrically using a form such as

INVENTORY (PART=PIN, WAREHOUSE=WEST,

SUPPLIER=?)
or

INVENTORY (SUPPLIER=?, PART=?,
WAREHOUSE=WEST)

85

4.4.3 Two Names

A binary relationship can be traversed in two directions, and
each is sometimes given its own name. (The two directions are
sometimes described as two distinct paths.)

A hybrid between one and two names consists of the practice
of giving the relationship one name, but requiring that it be
modified in some way to indicate direction (e.g., by prefixing a
minus sign for the direction considered to be “reverse”).

This convention could eliminate the need for role names, but
it does not extend well to n-ary relationships.

4.5 Relationships and Instances Are Entities

Instances of relationships are things themselves, about which

we may have information in the system.
They have attributes. Just as you have an age, so does your

association with your department, your spouse, and your car. For
a given part (type) stocked in a given warehouse, there is a
certain quantity on hand.

They can be related to other things. The storing of a certain
part in a certain warehouse is approved by a certain manager.

Instances of relationships can be related to each other
(illustrated in section 10.2).

Instances of a relationship can be identified (named) by
identifying the relationship and the entities being related:
“employed-in, John Jones, Accounting”. In real systems these
composite names of instances are usually not represented
explicitly, but are implied by the definition and organization of
the records in a file. A record in an employee file will explicitly
contain “John Jones” and “Accounting”; “employed-in” is
implicitly understood by users of the file, or may be factored out
into a file or record description somewhere. (Are there real
examples where an instance of a relationship has a single simple
name of its own, rather than a composite name?)

86

4.6 “Computed” Relationships

We’ve talked so far about relationships that get established
and broken, which we might naturally visualize in terms of links
between objects.

There are other kinds. Some are permanent, and are detected
by some sort of computational process rather than by traversing
links. And there is an enormous number of non-permanent
relationships that are not represented by direct links either.

Every computable procedure represents relationships
between its inputs and its outputs. The correspondences between
angles and their sines can be computed, and so can the
correspondences between diameters and areas of circles.

Perhaps the simplest such “computed” relationships are the
orderings. The fact that one employee earns more than another
(clearly a relationship between the two) is determined by
performing comparisons, not by traversing links. We aren’t going
to think in terms of explicit links between each employee and
everyone who earns more than he does.

We might be tempted to dismiss computed relationships as
an essentially different kind of phenomenon. After all, why
should we get all tangled up between linkages and
computations? They just don’t feel like the same sort of thing at
all. But consider:

• The way we talk about the two is not all that different:

“list all the employees who are assigned to this
department”, and “list all the departments which have
smaller budgets than this department”.

• We’re never quite sure that there really aren’t explicit
links lurking under the covers. Sometimes there really
are tables that get looked up, instead of performing
computations. Do trig tables, log tables, tax tables, etc.
look all that different from intersection records?

Another kind of non-explicit relationship exists in enormous

quantities. These are all the implied, computed, compound,
composite, derived (I use these all synonymously for the

87

moment) relationships which arise out of the existence of other
relationships. We can’t avoid them. As soon as any two things
are each related in any way to a third thing in common, they
have some relationship to each other. Some of these are
meaningful and interesting to us, others are not. If your father
and my brother are the same person, then I am your uncle. If
your birthdate and mine are the same, we are of the same age. If
your were born on the same date that I visited my grandmother,
then that too is a relationship ⎯ but who cares. (But then, who
cares that we are the same age? Both relationships are there,
whether we care or not.)

If some such relationships are of special interest to us, then it
makes sense to name them, and to define how they arise. We can
define “in-law” as an appropriate composition of “spouse” and
“sibling”.

Now we have relationships which are not necessarily
permanent ⎯ they can be established and broken ⎯ but they are
not represented by direct links.

And then there’s another thing that can happen: we might not
be sure which were the “direct” relationships and which were the
“derived” ones. Then all we can do is to define all of them as
direct links, with appropriate specifications of derivation and
consistency. Consider this: we always tend to think of “uncle” as
derived from “father” and “brother” ⎯ but sometimes the only
thing we know about two people is that one is the uncle of the
other. We don’t know yet who their common relative is (we
might or might not care), but we’d like to record their
relationship directly. On the other hand, if we know that other
people have a common brother and father, then we want “uncle”
derived for us. And when a whole bunch of such relationships
might be asserted, we might like the system to perform some
reasonableness checks for us.

Ideally, we shouldn’t have to know much about the way
relationships are represented internally, as long as we have a
name to refer to them with. However (and you knew there was
going to be a however), certain differences in behavioral
characteristics are likely to be visible.

88

• The relationship might not be modifiable. Depending on
the implementation, you may or may not be able to say
“change the cosine of ninety degrees to .12345”.

• The number of instances might not be finite. It might not
be possible to list all instances.

• The instances might not be able to have attributes of
their own, or be related to other things (except perhaps
via other computations).

• They might not be bi-directional. Procedures might not
be provided for following the reverse direction.

Such behavioral characteristics of relationships ought to be

describable in an information model.

89

5 Attributes

5.1 Some Ambiguities

ots of things have lots of attributes. People have heights
and birthdays and children, my car is blue, and New York

is crowded. Much of the information in an information system
records the attributes of things.

But as common as the term “attribute” may be, I don’t know
what it means. The fact that I’ve been using the term is totally
irrelevant.

The term is used to mean different things at different times,
and I have trouble distinguishing the idea from others we’ve
already discussed. Don’t be fooled by the fact that I can rattle off
a few examples. As you’ll see later on, I really think they are
examples of something else.

There are several ambiguities in the way the term is used. In
order to explain that without getting tangled up in other
ambiguities, let me temporarily introduce three new terms, so
that we can get a better handle on what we’re talking about.
Every attribute has a subject: what it is an attribute of. People,
my car, and New York were the subjects of the attributes in the
examples above. Then there are targets, which are at the other
end of the attribute, such as heights, blue, and crowded. Thirdly,
there are links between subjects and targets. In the last example,
it isn’t “New York” or “crowded” which are important in
themselves; what is being expressed is a connection between the
two: New York is crowded.

(Later I’ll show that the three new terms are quite imperfect.
They still retain two ambiguities: type vs. instance, and thing vs.
symbol.)

First ambiguity: “attribute” sometimes means the target, and
sometimes the link. “Blue”, “salary”, “height” are sometimes
referred to as attributes. On the other hand, “color of car” and
“height of person” are also sometimes called attributes. If you
don’t make the distinction, you get trapped into believing that a

L

90

single construct can represent the idea of “blue” and the set of all
things that are blue. If you do make the distinction, then you had
better use the term very carefully. About half the people you
meet will use it in the opposite sense from you.

I tend to favor using the term “attribute” in the sense of the
link itself, between the subject and the target. But I’m not sure I
am always consistent in my usage (or that anyone else is).

The second ambiguity has to do with type and instance, and
my new terms haven’t helped that ambiguity one bit. Some
people say that “blue” (or “my car is blue”) is an attribute.
Others will say that the attributes in this case are “color” (or
“color of car”), and that the first two things were “values” (or
instances, or occurrences) of the attribute. I have no preference. I
tend to use the terms carelessly in either sense. Other people are
sometimes careful to define the sense they intend, and sometimes
they aren’t.

The third ambiguity has to do with thing and symbol, and
my new terms didn’t help in this respect either. When I explore
some definitions of the target part of an attribute, I get the
impression (which I can’t verify from the definitions given!) that
the authors are referring to the representations, e.g., the actual
four letter sequence “b-l-u-e”, or to the specific character
sequence “6 feet”. (Terms like “value”, or “data item”, occur in
these definitions, without adequate further definition.) If I were
to take that literally, then expressing my height as “72 inches”
would be to express a different attribute from “six feet”, since
the “value” (?) or “data item” (?) is different. And a German
describing my car as “blau”, or a Frenchman calling it “bleu”,
would be expressing a different attribute from “my car is blue”.
Maybe the authors don’t really mean that; maybe they really are
willing to think of my height as the space between two points, to
which many symbols might correspond as representations. But I
can’t be sure what they intend.

To summarize: any of the following might be an example
fitting the concept of “attribute”, although each exemplifies a
different thing:

91

• The concept of color.
• The concept of blue.
• One of the character strings “blue”, “bleu”, “blau”, etc.
• The general observation that cars have colors.
• The fact that my car is blue.
Perhaps these ambiguities can be resolved with some careful

definitions, and some authors do make a commendable effort.
Most definitional efforts I’ve seen, however, leave other crucial
terms undefined or ambiguous, so that we don’t really have a
working basis for applying the concept.

5.2 Attribute vs. Relationship

I’m really not very concerned about the ambiguities. For me,

these problems are overshadowed by a larger concern. I don’t
know why we should define “attribute” as a separate construct at
all. I can’t tell the difference between attributes and
relationships. (The astute reader may have noticed that I have, in
two earlier comments, identified both attributes and relationships
as constituting the bulk of the information managed in the
system.)

The fact that “Henry Jones works in Accounting” has the
same structure as the fact that “Henry Jones weighs 175
pounds”. “175 pounds” appears to be the name of an entity in the
category of “weights” just as much as “Accounting” is the name
of an entity in the category of “departments.” Both facts are
relationships between entities. Both facts (relationships) are
capable of themselves having attributes: Henry Jones has worked
in Accounting since 1970; Henry Jones has weighed 175 pounds
since 1970. Both facts are answers to a symmetric set of
questions:

• Where does Henry Jones work?
• How much does Henry Jones weigh?
• Who works in Accounting?
• Who weighs 175 pounds?

92

Both facts can be “traversed” in symmetric fashion to answer
questions like:

• Who works in the same department as Henry Jones?
• Who has the same weight as Henry Jones?

Sundgren tries to make the distinction on the basis of

whether the target is an object in the system ⎯ without defining
what that means: “At any point of time every object in [the
system] S possesses a set of properties. Some of the properties of
an object are local, i.e., they are independent of the existence and
properties of other objects in S. Other properties of an object are
relational, i.e., they depend upon the object’s relations to other
objects in S” [Sundgren 74]. Then he confesses, in the ensuing
discussion, that “...there are no formal criteria. However, I am
convinced that useful informal rules of thumb can be given.
Moreover, it is my experience that it is not a big problem for the
user to make a satisfactory intuitive distinction between objects
and properties.”

Berild and Nachmens write: “We store information about
objects ... of two kinds, namely attributes of an object and an
object’s relations to other objects. Note that this distinction
between attributes and relations is only of logical interest, as
both attributes and relations are stored as associations ...”
[Berild].

There really does always seem to be an entity lurking behind
the scenes somewhere, to which there separately corresponds an
assortment of symbols exhibiting ambiguity and/or synonyms.
We just have to learn to think of them properly. To accept the
equivalence between attributes and relationships, we may have
to acquire new habits of thought. My height really is not the
string of characters “6 feet”. A height (or other length) is a
certain interval in space (any good reason not to think of it as an
entity?); its measurement can be written down in many ways. A
day is just that ⎯ a day on which you can think of something as
having happened; there’s a large assortment of ways to write the
dates that are the names of that day. A color is something which

93

you can see, and maybe has a definition in terms of light wave
frequencies; it is not the word “blue”.

Even with numbers, we have to distinguish between the
abstract quantity and the various symbols that might represent it.
When it comes to measured quantities, there are really two steps
from entity to symbol:

1. From entity to abstract number, via a unit of measure. A

unit of measure establishes relationships between mass
entities and abstract numbers. The rule named “yards”
maps my height into a number that is the same as the
number of hands I have (which was mapped by a
“count” relationship).

2. From abstract number to symbol, via data type,
precision, base, notational system, etc. The symbol for
my height in yards is “2” in decimal integers, “10” in
binary integers, “II” in Roman numerals, and “two” in
English words.

The target of an attribute is rarely a symbol directly. There is

almost always a target entity distinct from the symbols. There are
some notable exceptions to this rule, but then I wouldn’t call the
phenomenon an “attribute”. If the target is really a pure symbol,
then I prefer to call this “naming” and deal with it in another
chapter. (It’s confusing. Some people do prefer to say that name,
employee number, and social security number are “attributes” of
people. It’s perfectly good jargon, but it does get some
underlying distinctions muddled.)

In real practice, of course, dates, heights, managers,
departments, etc. do get treated in diverse ways. But rather than
classifying that in terms of attributes vs. relationships, I think it
is more helpful to distinguish them on the basis of the kinds of
existence (and equality) tests employed for the entities involved.

Incidentally, I do share with you the intuitive inclination to
distinguish between relationships and attributes. For some facts
the term “attribute” seems appropriate, and others seem to be
“relationships”. It’s just that I can’t find any really objective
distinguishing criteria to support my intuitions consistently.

94

Sometimes some of us might subconsciously picture it in
terms of data records. If a fact is pictured just as a value in a
field, we are inclined to call it an attribute, but if it has the effect
of linking two records together, then it’s a relationship. But that’s
an unsatisfactory basis for defining the distinction. First of all,
we can conjure up many examples running counter to our
intuitions. Secondly, the same fact can be represented inside the
machine either way at various times. We want to define our basic
information constructs in real world terms; the implementation in
data processing mechanisms comes after we model the
enterprise, not before.

Let me suggest a way to satisfy our intuitions. Let us build a
modeling system that only supports one basic linking
convention, which we are free to call either “attribute” or
“relationship”. The terms will be synonymous; we can use
whichever one feels better at the moment.

If such a system doesn’t satisfy you, I hope that you will tell
me exactly what the system should do differently when it sees
the terms “attribute” and “relationship”.

5.3 Are Attributes Entities?

If one really wanted to develop a rigorous notion of

attributes (which I don’t), then this is another nasty question to
be faced. Intuitively, some might say that attributes aren’t
themselves entities (regardless of whether one had in mind the
links or the targets).

But if you think that relationships are entities, and you can’t
distinguish attributes from relationships, then where are you left?

And again: do you think that the subject of an attribute is
necessarily an entity? I’m inclined to think so. But it turns out
that some attributes are themselves the subjects of other
attributes (which would make them entities after all). Examine
carefully the structure of the following information, which is
likely to be found in some databases:

95

• The percentage of an object’s surface which is a given
color.

• The date an employee began receiving a certain salary.
• The ages of an employee’s children.

Those appear to be attributes of attributes.
And what about dates? They could have attributes, like day

of week, or scheduled events. An illustration in [Sharman 75]
shows a relation whose columns are month, day of month, and
day of week.

5.4 Attribute vs. Category

We can say something is a car, and we can say that

something is red. Intuitively, I feel that the first assertion is about
the intrinsic nature of the thing (hence, its category), while the
second asserts additional information about its characteristics
(i.e., attributes). At one time I wanted to believe in a definable
difference between category and attribute, but I didn’t know how
to articulate it. Some assertions fall in a middle ground (“that is
an employee”), diminishing hopes for an effective distinction.

I’ve abandoned my hope of defining that distinction, too.

5.5 Options

In the area of attributes, just as with the other topics, we can
apply the constructs to the data in a number of arbitrary ways, all
of which make some sense to some people some time.

We can refine the structure of attributes to varying degrees.
We tend to treat hair color as an attribute of a person, although a
strict rendition perceives that color is an attribute of hair, which
in turn is an entity related to a person. So also with date of hire,
which is really the “starting time” attribute of the relationship
between an employee and employer. We are often inconsistent,
letting date of hire be an attribute of a person in the employee
file, while treating it as the attribute of a relationship in the
employment history file.

96

It sometimes makes sense to say that all colored things draw
their attribute values from the same “domain”. On the other
hand, hair colors and car colors may not have many values in
common. The list for the existence test may be different in the
two cases!

A given set of things might be treated as the names of
distinct fields (attributes?), or as the set of allowable values for a
single field. We have all seen two kinds of forms for indicating,
e.g., marital status. One has a heading “marital status”, under
which you are expected to fill in “married”, “single”, etc. The
other kind has “married”, “single”, etc. as headings under which
you are expected to make some mark (in this case the field
values correspond to yes/no).

The same phenomenon might be an attribute, a
categorization, or a relationship. Consider a person employed by
a certain company:

• In a banking database in which companies are “non-

entities”, a person’s employer is simply an attribute of
the customer.

• In that company’s database, that person falls in the
category of “employees”.

• In a more generalized database, “employed by” may be
just one of several possible relationships between people
and companies. Others might be “stockholder of”, “sells
to”, “is covered by benefits of”, etc.

And the view of the phenomenon will often change with

time. That is, different perspectives become appropriate as the
information processing needs of an enterprise change, and as the
scope of interest changes.

Examples:

• If the databases of several companies are merged (e.g.,

for more efficient payroll processing), then the
“employee” entity becomes a “person” entity with an
explicit relationship to his company.

97

• Then, also, date of hire changes from an attribute of an
employee to being an attribute of the relationship
between person and company.

• When a company starts automating its personnel history
records, the relationship between employee and
department changes from 1:n to m:n.

• “Address” changes from a simple attribute to a complex
one when residence histories are kept.

• Instead of address being an attribute of a person, it could
become an attribute of a “place” entity. A “resides”
relationship could be introduced between people and
places.

• Some states generalize a driver’s license into a general-
purpose identity card. Then the attribute “is licensed to
drive”, which was implied for all cardholders in the old
construct, now must be made an explicit attribute.
Something similar probably happens when social
security numbers are extended to serve as taxpayer
identification numbers; it may no longer be true that a
social security account exists for each of these numbers.

5.6 Conclusion

I will not formally distinguish between attributes and

relationships, or between those two and categories. Even so, I do
continue to use the terms “attribute” and “category” when they
seem more natural, but I won’t be able to say why they feel more
natural at the time. Most likely, it will correlate well with my
implicit assumptions about the existence tests for the entities
involved.

98

99

6 Types and Categories and Sets

6.1 “Type”: A Merging of Ideas

hree ideas seem to have gotten combined:

• The urge to classify things according to “what they are”.
• A need to express the semantic characteristics of things,

by specifying which attributes and relationships and
names are relevant and valid for them. The easiest
paradigm: certain rules and constraints apply to certain
classes of things.

• A tradition of data description, based on record types.
These often tend to be identified as the same
phenomena. As a result, the concepts of “entity type”
and “record type” are held to coincide. And they are
often considered to represent a special kind of
information, somehow distinct from other kinds.

6.1.1 Guidelines

One common denominator is the notion of grouping. We
assume that things can be divided up into groups, where the
groups are expected to satisfy a number of guidelines:

1. The groups correspond to our intuitive ideas of what

things are, i.e., classification.
2. The groups serve as the scopes over which naming

conventions apply. E.g., name syntaxes, uniqueness
rules.

3. The groups serve as the scopes over which validity
constraints apply.

4. The groups correspond to the domains of relationships.
5. Things don’t move from one group to another.

T

100

6. The groups are mutually exclusive (nothing belongs to
more than one such group) ⎯ an enormously bad
hangover from the record type heritage, but still required
in almost all definitions.

In any discussion of “type”, it would be useful to establish

which of these guidelines were to be assumed.

6.1.2 Conflicts

Unfortunately, these guidelines are generally quite
incompatible.

As we’ve already seen, notions of “entity categorization” are
very variable, subjective, and dependent on local purpose. We
have “categories” for which naming conventions aren’t
uniformly applicable, for which attributes aren’t universally
applicable.

Some people don’t have social security numbers; some don’t
have maiden names. If a category is defined to be the union of
several sub-categories, a rule for one sub-category may not apply
to another. Further, we may not want to formally define sub-
categories corresponding to the scope of every rule, e.g., just for
married female employees.

Books may have “International Standard Book Numbers”
(ISBN) and Library of Congress numbers. Some books have
both, some have neither, some have one or the other. The
category of things covered by Library of Congress numbers
includes photographs, movies, tapes, recordings, etc. Those don’t
get ISBN’s.

Record types are probably the only concept to which the
guideline of being mutually exclusive is applicable.

I would speculate that for each pair of guidelines in the list
above, we could find some example that brought the two into
conflict.

101

6.2 Extended Concepts

6.2.1 Arbitrary Sets

Consider arbitrary groupings: sets defined in terms of things
satisfying certain predicates, e.g., having certain relationships to
certain things, or Boolean combinations of such conditions. Such
conditions could be based on attribute values, relationships to
other things, names, etc. It’s not clear why “type” is a different
idea from these, or which of these is to be thought of as “type”.
There are some good reasons not to make type quite so distinct.

For example, there should be some way to present categories
as properties (e.g., field values) to applications. E.g., if someone
is both an employee and a stockholder, then

• An application dealing with stockholder records should

be able to see employer name as a field value, and
• An application dealing with employee records should be

able to see a field indicating stockholder status.

Conversely, properties may be used to define “apparent”

categories to applications, probably as subsets of “real”
categories. For example, a new application may want to deal
with a file of managers (perhaps with department records also
occurring in the file). “Manager” appears to be the category (i.e.,
file name or record type) to the application, but it is defined to
the system as that subset of the “employees” category which has
“manager” as the value of the “job” attribute.

6.2.2 General Constraints

We haven’t lost sight of the original objective, namely to be
able to specify rules about “groups” of things. But now the
groups need not be so explicit; we can speak in terms of how
we’ll recognize the individuals to which the rules apply. Rules
and constraints can be generalized to the form: “the following
rule applies to all things satisfying a certain predicate”, where

102

the predicate might be “all things having relationship X to object
Y”. For traditionalists, X might be “has type” and Y could be
“employee”. For set theorists, X would be “is member” and Y
would be “employees”. For others, X might be “is employed”
and Y might be “IBM”.

It is thus a matter of viewpoint as to whether the
fundamental constructs involved here are sets and membership
or entities and relationships.

This general form solves the “partial applicability” problem:
we can specify that “maiden name” is applicable to all things
which are employees of IBM and which are of the female sex
and which have been married.

Some of the rules might govern the interaction of the sets
themselves: two sets may not overlap (equivalently: if one
relationship holds for a given entity than another relationship
can’t, and vice versa); one set may be a subset of another (the
defining relationship of one implies the other), and so on.

In making types non-exclusive, we come closer to reality ⎯
and suffer the penalty of facing more of the complexities of real
life. We now have to deal with the interaction of rules that apply
to overlapping sets. Sometimes they can get inconsistent:
employees might be required to do something stockholders are
forbidden to do. It would take some complex analysis to insure
that a large set of specified constraints was entirely consistent.
But saying that this is a disadvantage of overlapping types is the
view of the ostrich. Exclusive sets don’t solve the problem; they
avoid it by pretending that employees and stockholders don’t
overlap.

Problems of overlap and consistency can even occur with
respect to specifying existence and equality tests. This can arise
when there is an overlap of “types”, where some members have
explicit surrogates and some don’t. Consider a personnel
database that has explicit surrogates (records) for employees, but
not for dependents. This is fine so long as we are willing to treat
employees and dependents as disjoint categories. But suppose
we needed to know which dependents are also employees?
Dependents are usually listed by name only, and that is not an
unambiguous key to the employee file. An employee might have

103

the same name as someone else’s dependent (or his own son!).
Various solutions can be devised, none of them elegant.

The same situation can occur in a banking database, in which
a client’s employer might be a simple attribute (field value). The
bank may want to be able to determine whether a client’s
employer was itself a client of the bank.

6.2.3 Types, If You Want Them

Given a general mechanism for describing sets, one can try
to superimpose a notion of “type” by imposing rules such as
these:

• Some sets confer naming rules on their members.
• Every object must “belong” to at least one such set

(which means that the object has the required
relationships to appropriate objects).

• Once a member of such a set, the object may not leave
the set, except when the object is deleted from the
system.

• Such sets could be called “types”, but underneath it all
they are still ordinary sets.

If that doesn’t satisfy your notion of type, just vary the rules

to suit yourself. Then compare notes with your neighbor.

6.3 Sets

6.3.1 Sets and Attributes

Be cautious in equating sets with attributes (this bears on the
ambiguities mentioned in chapter 5). For example, we might
have an object representing the set of employees in the
aggregate, and an object representing the concept of “employee”
⎯ and then be tempted to say they are the same object. We
might have observed apparent redundancies. Certain patterns of
relationships occur in parallel with the two objects: a person has

104

the attribute of being an “employee” if and only if he is a
member of the set of employees. So why keep them apart?

The difficulty is that the concept of “employee” determines
more than one set. The set I had in mind consisted of people who
are currently employees. (That’s what you had in mind too, isn’t
it?) But people can be related to the concept in many ways.
There are people who have been employees, or are eligible to
become, or have applied to be, or have pretended to be, or
refused to be, and so on, together with various combinations of
these sets which yield new sets. For other kinds of concepts,
other relationships might also be relevant, such as “partly”, or
“almost”, or “occasionally”.

A set is determined by a predicate, whose minimal form
involves a relationship to an object: the set of things having
relationship X to object Y. One should not presume that the
object Y determines a single set.

6.3.2 Type vs. Population (Intension vs. Extension)

A “type” is sometimes referred to as a set of occurrences
(e.g., the type “employee” consists of the set of employees). This
is all right as an informal concept, but several precautions ought
to be observed [Durchholz].

There are two distinct notions of “set” involved here. There
is the abstract idea of what the type is (e.g., the idea of
“employee”), and the current population of people who happen
to be employees at the moment. The former is the “intension” of
the set, and the latter is its “extension”. The latter tends to
change often (as people get hired and fired), but the former
doesn’t.

Very simply, a “type” corresponds to the intension of a set,
not its extension. The concept of “employee” isn’t altered by
hiring and firing people.

Incidentally, one ought to be very cautious about claims of
various models being based on “the axioms of traditional set
theory”. That set theory deals entirely with extensional sets: a set
is determined entirely by its population. There is simply no
notion of a set with changing population; each different

105

population constitutes a different set. So, the relevance of such
set theory to any model of data processing is, at the very least,
questionable.

Another caution has to do with emptiness. The concept of
“employee” continues to exist even if there are no employees.
One oughtn’t think that the concept has disappeared just because
no space is occupied by employee records.

Again, this simply amounts to distinguishing the intension
and extension of the set. And, to those familiar with set theory, it
corresponds to the existence of an empty set (i.e., the set, though
empty, does itself exist).

As a consequence of its extensional foundation, traditional
set theory holds that there is exactly one empty set. In fact, this
provides the set theoretic base for number theory: the empty set
is the definition of the concept of “one”. Thus, if all employees
are fired, then the set of employees is the same as the set of
unicorns. Not two equivalent sets, but one single solitary set to
which we may give several names. Again, this doesn’t
correspond to our data processing models: “employee” and
“unicorn” are always two distinct types, or concepts.

This distinction between extension and intension affirms that
a type (set) is a distinct entity from any of its members. One
could perceive set membership, or type membership, in terms of
a relationships between pairs of entities: set objects and member
objects.

6.3.3 Representation of Sets

Sets need not be introduced as primitive kinds of objects.
They can be generalized into objects and relationships.
“Belonging” can be a relationship between an arbitrary object
and an object representing a set; “subset” can be a relationship
between two objects representing sets. With a strong enough
capability for implication and constraint on relationships (cf.
section 4.6), the behavior of sets can be modeled. E.g., we can
specify a derived relationship: X “belonging” to Y and Y being
“subset” of Z generates X “belonging” to Z.

106

Thus, the basic mechanism of objects and relationships
seems adequate to cover the phenomena of types and sets. It’s
useful, too, because types and sets share many of the
characteristics of common objects. They have names (and
perhaps aliases), and attributes (creation date, number of
members), and relationships with other things: they are subsets
of one another, people are responsible for maintaining them, they
are governed by constraints, etc.

107

7 Models

7.1 General Concept of Models

e return now to the domain of computerized
information systems. The bridge that gets us back is
the “data model”. It is a bridge in the sense that data

models are techniques for representing information, and are at
the same time sufficiently structured and simplistic as to fit well
into computer technology.
We are always in trouble with words. The term “model” is so
over-used as to be absurd. Out of the whole complex of
meanings it might have, the following is what I have in mind at
the moment.

A model is a basic system of constructs used in describing
reality. It reflects a person’s deepest assumptions regarding the
elementary essence of things. It may be called a “world view”. It
provides the building blocks, the vocabulary that pervades all of
a person’s descriptions. In the broad arena of human thought,
some alternative models might be composed of physical objects
and motion, or of events seen statically in a time-space
continuum, or of the interactions of mystical or spiritual forces,
and so on.

A model is more than a passive medium for recording our
view of reality. It shapes that view, and limits our perceptions. If
a mind is committed to a certain model, then it will perform
amazing feats of distortion to see things structured that way, and
it will simply be blind to the things which don’t fit that structure.

Some linguists have been telling us that for a while.
“...language defines experience for us because of our
unconscious projection of its implicit expectations into the field
of experience... Categories such as number, gender, case, tense,
mode, voice, aspect, and a host of others ... are not so much
discovered in experience as imposed upon it” [Sapir]. We’ll
come back to that in section 11.8.5.

W

108

In much narrower terms, the data processing community has
evolved a number of models in which to express descriptions of
reality. These models are highly structured, rigid, and simplistic,
being amenable to economic processing by computer. These
models include such things as files of records, tabular structures,
graphs (networks) of lines connecting points, hierarchies (tree
structures), and sets.

Some members of that community have been so
overwhelmed by the success of a certain technology for
processing data that they have confused this technology with the
natural semantics of information. They have forgotten any other
way to think of information except as regimented hordes of
rigidly structured data codes ⎯ in short, the mentality of the
punched card.

7.2 The Conceptual Model: Sooner, or Later?

All the problems touched on in this book converge on the

conceptual model (cf. section 2.2.2). It is in this medium that all
the things an enterprise deals with must be reduced to crisply
structured descriptions.

The conceptual model will be a very real computer-related
construct, just like a program or a data file. An enterprise is
going to have a large amount of time, effort, and money invested
in the conceptual model.

There is the learning investment. In spite of our best efforts,
any formalism we adopt as the basis of the conceptual model
will still be an artificial structure. The concepts will not be
perfectly intuitive to anyone; the rules, limitations, and
idiosyncrasies will have to be learned. There will be a formal
language to be learned, as well as operating procedures.
(Interactive facilities and other design aids may help ⎯ after the
bugs get ironed out ⎯ but even their use has to be learned.)

Then comes the actual modeling effort. A lot of energy will
go into forcing a fit between the model and the enterprise. The
correspondences won’t always be obvious; there will be lots of
alternatives, and it will take some iterations to recognize the best

109

choices. Sometimes it will take a flash of insight to perceive the
real world in a new way, which better fits the model. Sometimes
the enterprise itself will be altered to fit the model. (It’s not
unusual for a company to adopt a whole new part numbering
scheme before automating their inventory control.) This is all
accompanied by the gargantuan task of simply collecting and
coordinating a mountainous heap of descriptions. “Many
corporations will be carrying out the lengthy job over the next 10
years of defining the thousands of data-item types they use and
constructing, step by step, suitable schemas from which their
databases will be built. The description of this large quantity of
data will be an arduous task involving much argument between
different interested parties. Eventually the massive databases that
develop will become one of the corporation’s major assets”
[Martin].

The end result will be a physically large volume of
information. “It must be emphasized that the conceptual
schema is a real and tangible item made most explicit in machine
readable form, couched in some well defined and potentially
standardizable language” [ANSI]. Think of it in the same orders
of magnitude as a program library, or a system catalog, or a
payroll file. Think of cylinders of disk space, and printouts many
inches thick. Think of a small army of technical personnel who
have been indoctrinated in a particular way of conceptualizing
data, and who have mastered the intricacies of a new language
and the attendant operational procedures.

All this time, manpower, and money will be invested by
customers in any conceptual model supported in a major system.
We had better be very careful about the architecture of the first
one. Any attempt to replace it with a better one later will threaten
that investment; customers won’t accept the replacement any
faster than they now accept a major new programming language,
or a new operating system. And the replacements will forever be
hamstrung by compatibility and migration requirements.

Unfortunately, there are some natural forces which work
against our getting it right the first time.

We are just entering a transitional phase in data description.
The idea of having three levels of data description (i.e., including

110

a conceptual model) has been much researched and written about
([ANSI], [GUIDE-SHARE]), but it hasn’t yet taken serious hold
in any significant commercial systems. It’s still on the horizon;
it’s an idea whose time is just about to come. (I hope I won’t still
be saying that ten years from now.)

The builders and users of today’s commercial systems quite
justifiably want to avoid cluttering their systems with anything
that might impair efficiency and productivity. The argument that
this new approach will make the overall management of data
more productive in the long run has yet to be convincingly
demonstrated to them.

It is quite understandable that the first steps they take in that
direction are small steps. They will first accept data dictionaries
that are off-line, not interfering with the productive flow of their
systems. They will first accept dictionaries formulated in terms
of data items and records, which are the objects they can directly
observe proliferating in their systems, and which are most visibly
in need of management.

The need for a more sophisticated descriptive model will
only gradually achieve general recognition. It will come from the
headaches of trying to crunch together the diverse record formats
and data structures used by growing families of applications
operating on the same integrated database. The nonsense of
trying to reflect all their record formats in the conceptual model,
while still pretending that the conceptual model describes the
entities of the enterprise, will become apparent.

The need for a more sophisticated approach to data
description will also grow as the interfaces of the data systems
expand to involve more people who are not trained in computer
disciplines. Such people will be involved both as end users and
as managers of the information resource. Someday there will be
a general recognition of what it means, and what it’s worth, to
model entities and relationships instead of data items and
records. I hope that recognition won’t come too late.

111

7.3 Models of Reality vs. Models of Data

One thing we ought to have clear in our minds at the outset
of a modeling endeavor is whether we are intent on describing a
portion of “reality” (some human enterprise), or a data
processing activity.

Most models describe data processing activities, not human
enterprises.

They pretend to describe entity types, but the vocabulary is
from data processing: fields, data items, values. Naming rules
don’t reflect the conventions we use for naming people and
things; they reflect instead techniques for locating records in
files (cf. [Stamper 77]).

Failure to make the distinction leads to confusion regarding
the roles of symbols in the representation of entities (sections
2.4, 3.8, 3.9, 8.8), and some mixed ideas of “domain” (sections
2.4, 9.1).

7.3.1 Semiotics

The relevance of semiotics (a branch of philosophy dealing
with the theory of signs) to data processing has been stressed by
such authors as Zemanek and Stamper. It is a natural connection,
since a computer deals only with the signs which represent
things, and not with the things themselves.

Some authors equate signs with information, defining
semiotics as “the theory of information (or of signs and
signals)”, and then further defining information as “the output of
a mapping process, in the form of analog or digital signs or
signals” [Tully].

This approach is tempting because it deals with quantifiable,
measurable things. It lends itself to manageable theories, testable
hypotheses, probability theorems, and other impressive
mathematical paraphernalia. It lets one compute how many
redundant bits have to be sent down a noisy channel to achieve a
certain probability of correct reception at the other end. It doesn’t
ask what those bits might mean to anybody.

112

It is a powerful ally to the approach to information that is
founded on records and data items. The focus is on recorded
symbols rather than on what the symbols might represent.

This interpretation of semiotics is the wrong approach for the
conceptual model. As its name implies, the conceptual model
should describe concepts, not signals. Signals and concepts
correspond very poorly. To illustrate: I consider a person’s
weight to be a single piece of information. Depending on the
units and precision of measurement, this information can have
many representations. Since each representation comprises a
different “sign” or “signal”, a narrow semiotic approach to
information would treat each representation as a distinct piece of
information. What is needed here is a concept of “equivalence
classes” of signals which all convey the same meaning.
Information as a concept would then correspond to these
equivalence classes themselves, rather than to the signals
contained in the classes.

Conversely, such a narrow approach to information would
fail to deal with the fundamental problem of ambiguity, wherein
the same signal may convey different meanings in different
circumstances. In general, we might have a many-to-many
relationship between signals and concepts.

Tully himself unwittingly encounters the duality between
information as signs and as concepts when he says “information
is a mapping or model of something else (which could be an
object, or an event, or some other information)” (my emphasis).

Computers do deal only in signs, and a database is only a
collection of signs. From these premises one can easily ⎯ and
incorrectly ⎯ conclude that the conceptual model describes a
collection of signs.

The models themselves are ensembles of signs, and in
particular the signs designate sets of things (the external and
internal models contain signs describing sets of records and
fields, not individual instances). The external and internal
models are appropriately constrained to describe sets of signs,
since what is being described there consists of things that can be
processed by programs and stored in devices.

113

But the conceptual model need not suffer this restriction.
There is no reason why we can’t introduce signs naming sets of
things (“employees”, “departments”) distinct from signs for the
sets of signs which name such things (“employee numbers”,
“social security numbers”, “department codes”, “department
names”).

With such separations, we can more clearly approach a
semantic bridge to reality in the conceptual model, by explicitly
relating sets of signs to sets of things.

7.4 Current Models

7.4.1 Four Popular Models

For a long time the only model for processing data looked
like a file of punched cards. The record model is based on such
card images.

Three other models are gaining popularity, being in various
stages of acceptance in the data processing community. These
are the hierarchical, relational, and network models. The
hierarchical model is well established in commercial usage, e.g.,
in IMS. The network and relational models seem to be the main
alternatives which designers of new systems are expected to
consider. A number of commercial or prototype systems are
based on one or the other of these two. The March 1976 issue of
Computing Surveys was devoted to expositions of the
hierarchical, network, and relational models.

None of these models departs very radically from the record
model. Records are very much apparent as the nucleus of all
three. So, chapter 8 will deal extensively with the record model
and all its pervasive implications. Chapter 9 will then briefly
comment on the other three.

7.4.2 An Ironic Ambiguity

I will comment on the other three models in chapter 9, but I
will not describe them. My neglect in this regard might be

114

attributable to laziness, but I have really been avoiding it because
of a supreme irony: the models themselves are ambiguous. Each
model can be viewed in many ways, and means different things
to different people.

The following is a partial list of the factors that might be
considered in describing and comparing such models:

• There is an “idealized” data structure, e.g., hierarchy or

graph.
• The variations on such idealized structures implied by

the definitions of systems such as IMS and DBTG.
• Further variations in such structures occurring in various

actual implementations (and versions, etc.).
• Various methods for the internal implementation of such

structures.
• An idealized set of operations that might be associated

with the structure (e.g., “get parent”).
• The actual semantics of manipulation embodied in the

definitions of IMS and DBTG.
• An assortment of languages in which these semantics

might be embedded, at various levels of human
factoring.

• Things in these languages that have nothing to do with
the basic data structures, e.g., currency (position)
management.

• Variations in all the various implementations of all these
languages.

• And you might evaluate all of these differently when
considering them for the external, internal, or conceptual
models.

We often fix on some set of these characteristics as

“essential” to a model, with the rest being cosmetic variations
that don’t really matter. The trouble is, each of us is likely to fix
on a slightly different set of essentials. Unless the underlying
assumptions are very carefully exposed, many debates about
these models are in danger of comparing apples and oranges.

115

Of course, we are just being haunted again by the perverse
subjectivity of perceived reality. Show three people a DBTG set
and one will see a named relationship among things, another will
see a set of records, and the third will see a ring of pointers
through which users have to navigate.

I haven’t been able to decide which view is best to take for
explaining these models.

7.4.3 Graph Structured Models

There is an increasingly visible trend away from record
oriented data models toward models that might generally be
called semantic nets, or graph structured models. The trend is
highly visible, that is, everywhere except in current commercial
data processing. “Information systems technology has relied
solely on fact representations which arose from card and tape
media. These representations will have continued utility both at
the user interfaces for human efficiency in transaction
specification and at the interface to physical media for computer
efficiency, but to provide further improvements in data
independence we will probably have to supplement them with a
compatible, more neutral form of fact representation at the
system interface. We may gain clues about the form of this
supplement from the freer form work on mathematics and
linguistics” [Senko 75b].

The trend is visible in binary relation models such as those
of Abrial and Senko. It is visible in the “idea structures” of
[Griffith]. Graph structures almost invariably emerge when the
primary objective is the representation of information, rather
than data processing ([Bell], [Bobrow], [Heidorn], [Schank],
[Shapiro]). Various efforts to provide a semantic layer around the
relational model have led to graph structures ([Sowa],
[Roussopoulos], [Schmid], [Sharman]).

A description of such models is beyond the scope of this
book. One good place to start general research might be
[Kerschberg 76a].

One might think, by the way, that the term “network” also
refers to such models. Unfortunately, as it is currently used, it

116

does not. The term “network model” means something entirely
different, as we shall see in section 9.3.

117

8 The Record Model

ecords provide a very efficient basis for processing data.
They enable us to map out very regular storage structures.
They make it easy to write iterative programs for

processing large volumes of data. They make it easy to partition
data into convenient units for moving around, locking up,
creating, destroying, etc.

In short, record technology reflects our attempt to find
efficient ways to process data. It does not reflect the natural
structure of information. Senko refers to “a major commitment to
particular restrictive representations like the arrays of scientific
computation, the extensional aspects of set notations, the n-
tuples of relations, the cards, records, files, or data sets of
commercial systems and the static categories of natural language
grammars. Each of these representations has great merit for its
original area of study, and in turn it has made major
contributions to the study of information systems. Nonetheless,
each provides only an approximate fit to the evolving,
heterogeneous, interconnected information structures required to
model real world enterprises” [Senko 75b]. Sowa observes:
“Historically, database systems evolved as generalized access
methods. They addressed the narrow issue of enabling
independent programs to cooperate in accessing the same data.
As a result, most database systems emphasize the questions of
how data may be stored or accessed, but they ignore the
questions of what the data means to the people who use it or how
it relates to the overall operations of a business enterprise”
[Sowa 76].

Record technology is such an ingrained habit of thought that
most of us fail to see the limitations it forces on us. It didn’t
matter much in the past, because our real business was record
processing almost by definition. But we want to approach the
conceptual model a little differently. We want it to reflect
information, rather than data processing technology. When
different applications deal with the same information using

R

118

different record technologies, those differences shouldn’t clutter
up the conceptual model. (And we might want to consider the
possibility of future data technologies that are not so record
oriented.)

When I use the term “record”, I have in mind a fixed linear
sequence of field values, conforming to a static description
contained in catalogs and in programs. A record description
consists largely of a sequence of field descriptions, each
specifying a field name, length, and data type. Each such record
description determines one record type.

One field (sometimes a combination of several fields) is
often designated as the key, whose values uniquely distinguish
and identify occurrences of this type of record.

As far as the system is concerned, a field name signifies a
space in the record occupied by data in a certain representation.
Any other semantic significance of the field name is perceived
only by the user.

Some record formats allow a certain variability by
permitting a named field or group of fields to occur a variable
number of times within a record (i.e., as a list of values or sets of
values). I will use the term normalized system to refer to systems
that do not permit repeating groups or fields. This follows from
the relational model, which excludes such repetitions via its
normalization requirements (specifically, first normal form;
[Codd 70], [Kent 73]).

8.1 Semantic Implications

Much of the meaning of a record is supplied by the mind of

the user, who intuits many real world implications that
“naturally” follow from the data. Quite often these implications
are buried in the procedures encoded in specific application
programs written to process the records. But if we strip away
such inferred interpretations, and look only at the semantics that
inherently reside in the record construct, we find the following
presumptions about the nature of information:

119

• Any thing has exactly one type ⎯ because a record has
exactly one record type. We are not prepared for multiple
answers to “What kind of thing is that?”.

• All things of the same type have exactly the same
naming conventions and the same kinds of attributes ⎯
because all records of the same type have the same
fields.

• The kinds of names and attributes applicable to an entity
are always predictable and don’t change much ⎯
because our systems presume stable record descriptions
in the catalog or dictionary, and because we’ve learned
that it’s traumatic to reformat a file of records.

• There is a natural and necessary distinction between data
and data descriptions. We are accustomed to having
record descriptions in catalogs, and in programs, quite
separate and different from data files.

• In particular, the name of the relationship occurring
between two entities is not information, since it doesn’t
occur in the data file. For that matter, neither does the
type of an entity (i.e., the contents of a record don’t tell
us that the thing represented in a certain field is an
“employee”).

• A record, being the unit of creation and destruction,
naturally represents one entity. Anything not represented
by a record is not an entity.

• Such entities are the only things about which we have
data. The key field of a record identifies one such entity;
all other fields provide information about that entity, and
not about any other entity. (This is the fundamental
information structure implied by the format of a single
record.)

• All entities have unique identifiers. Or at the very least,
all entities are distinguishable from each other. I.e., for
any two entities, we must know some fact that is
different about them, which we can use to tell them
apart. (Some systems require records to have unique
keys; some do not accept duplicate records.)

120

• Each kind of fact about an entity always involves entities
(or attribute values) of a single type. We don’t expect
two different kinds of entities to occur in the “employer”
fields of two people’s records; the record system doesn’t
have any way of telling us which type is occurring in
that field for a particular record occurrence.

• And the entities or attribute values involved in a given
kind of fact all have the same form of name
(representation). We don’t have self-describing records
which tell us which data type or format is being used in
this particular record occurrence.

• A given entity should be referenced by the same name
(representation) everywhere it occurs. The only way we
know if two references are to the same thing is by a
match on the fields containing those references.

• There is an essential difference between entities and
attribute values, and between relationships and
attributes. The difference seems to correlate with the
things that are or aren’t represented by records. If there’s
a record, then the thing it represents is an entity, and a
reference to it in a field comprises a relationship (as in
the department field of an employee record). But if there
is no separate record for the thing, then a reference to it
involves neither an entity nor a relationship; it’s simply
an attribute value (as in the salary or spouse fields of an
employee record).

• Relationships are not distinct constructs to be
represented in a uniform way. Obviously; otherwise we
wouldn’t be provided with so confusingly many ways to
represent them.

• Many-to-many relationships are (usually) entities in their
own right. And the associations implied by multi-valued
attributes are also entities, even though they aren’t
relationships. (This all follows from their being
represented by distinct records.) But one-to-many
relationships are (usually) not entities.

121

• Relationships and compound identifiers are the same
phenomenon, since they can have the same
representation.

8.2 The Type/Instance Dichotomy

The dichotomy between types (descriptions occurring in

catalogs or dictionaries) and instances (occurring in files or
databases) itself makes some limiting presumptions about
information.

8.2.1 An Instance of Exactly One Type

If we intend to use a record to represent a real world entity,
there is some difficulty in equating record types with entity
types. It seems reasonable to view a certain person as a single
entity (for whom we might wish to have a single record in an
integrated database). But such an entity might be an instance of
several entity types, such as employee, dependent, customer,
stockholder, etc. It is difficult, within the current record
processing technologies, to define a record type corresponding to
each of these, and then permit a single record to simultaneously
be an occurrence of several of the record types.

Note that we are not dealing with a simple nesting of types
and sub-types: all employees are people, but some customers and
stockholders are not.

To fit comfortably into a record-based discipline, we are
forced to model our entity types as though they did not overlap.
We are required to do such things as thinking of customers and
employees as always distinct entities, sometimes related by an
“is the same person” relationship. At most, it might be possible
to model a simple type and sub-type structure, where records of
the sub-type can be obtained by simply eliminating irrelevant
fields from the containing type.

122

8.2.2 Descriptions Are Not Information

The information in a file consists mainly of field values
occurring in records. Thus there is likely to be a data item
answering the question “Who manages the Accounting
department?” The manager’s name can be found in a field
somewhere. But it is not likely that the file can provide an
answer to “How is Henry Jones related to the Accounting
department?” There are no fields in the file containing such
entries as “is assigned to”, “was assigned to”, “on loan to”,
“manages”, “audits”, “handles personnel matters for”, etc.
Depending on how the records are organized, the answer
generally consists of a field name or a record type name, which
are not contained in the database. To a naive seeker of
information from the database (e.g., via a high-level query
interface), it is not at all obvious why one question may be asked
and the other may not.

It’s not just that he can’t get an answer; the interfaces don’t
provide any way to frame the question. The data management
systems do not provide a way to ask such questions whose
answers are field names or record type names.

Then consider the following questions:

1. How many employees are there in the Accounting

department?
2. What is the average number of employees per

department?
3. What is the maximum number of employees currently in

any department?
4. What is the maximum number of employees permitted in

any department?
5. How many more employees can be hired into the

Accounting department?

If the maximum number of employees permitted is fixed by

corporate policy, then a system offering advanced validation
capabilities is likely to place that number into a constraint in a
database description, outside the database itself. Our naive

123

seeker of facts will then again find himself unable to ask the last
two questions. He might well observe that other things having
the effect of rules or constraints are accessible from the database,
such as sales quotas, departmental budgets, head counts, safety
standards, etc. The only difference, which doesn’t matter much
to him, is that some such limits are intended to be enforced by
the system, while others are not.

This suggests that we might want to seek a way to represent
such constraints in the same format ⎯ and in the same database
⎯ as “ordinary” information, but with the added characteristic
that they are intended to be executed and enforced by the data
processing system.

It is true that descriptions and constraints are inherently
different from other data with respect to their update
characteristics. Changes to these imply differences in the
system’s behavior, ranging from changes in validation
procedures to physical file reorganizations implied by format
changes. But such descriptions and constraints need not be
inherently different for retrieval purposes. And even with respect
to update, the method need not be inherently different as
perceived by users. It is only necessary that the authorization to
do so be carefully controlled, and that the consequences be
propagated into the system.

Some information is in the catalog rather than in the record
occurrences because it is the same for all occurrences, hence
factorable. Field names, types, and lengths are typically treated
that way. But there have been proposals for, and probably
implementations of, systems of self-describing data. A record
might consist of a chain of pairs: a field name and a field value.
Then fields irrelevant to a given record occurrence just don’t
occur. Or each field might be accompanied by its own descriptor
of length, data type, units, etc., so these can vary from record to
record. In such cases the names, lengths, and types of fields
would be in the file and not in the catalog. Record lengths, as
another example, occur in the catalog for fixed length records,
but in the records for variable length records. If an application
using a file of mixed record types needed to know the length of

124

each record occurrence, it might be able to find that information
in some records and not in others.

There seem to be two real motivations for putting
information into the catalog:

• It is used by the system.
• It can be factored, i.e., it applies to all occurrences of a

given type.

These may be good reasons for maintaining this information

in special system-usable formats, and for being especially
concerned about controlling updates to it. But it is a mistake to
presume this to be an inherently different kind of information,
which does not need to be made available to users in the same
way as file data.

8.2.3 Regularity (Homogeneity)

Record structures work best when there is a uniformity of
characteristics over the population of an entity type. It is usually
necessary for the entire population to be subject to the same
naming conventions (e.g., there has to be something that can
serve as a key field over the entire population). It is usually
assumed that all instances of the entity type are eligible to
participate in the same relationships.

Most fundamentally, it is presumed that the entire population
has the same kinds of attributes. While exceptions are tolerated,
the essential configuration is that of a homogeneous population
of records, all having the same fields. The underlying assumption
is that field names can be factored out of the data

The more we deviate from this norm of homogeneity, the
less appropriate is the record configuration. There are certain
techniques for accommodating variability among instances in a
record structure, but these need to be used sparingly. If there can
be considerable variation among entity instances, then the
solutions become cumbersome and inefficient. Such solutions
include:

125

• Define the record format to include the union of all
relevant fields, where not all the fields are expected to
have values in every record. Thus many records might
have null values in many fields.

• Define the same field to have different meanings in
different records. Unfortunately, such a practice is never
defined to the system. With respect to any processing
done by the system, that field appears to have the same
significance in every record occurrence. It certainly has
only one field name, which in these cases usually turns
out to be something totally innocuous and
uninformative, like CODE or FIELD1. It is only the
buried logic in application programs which knows the
significance of these fields, and the different meanings
they have in different records.

Many entity types come to mind for which considerable

variability of attributes is likely to occur, such as people, tools,
clothing, furniture, vehicles, etc. For example, in a file of
clothing records, consider which of the following field names are
relevant (and what they might mean) in each record: size, waist
size, neck size, sleeve length, long or short sleeves, cup size,
inseam length, button or zipper, sex, fabric type, heel size, width,
color, pattern, pieces, season, number, collar style, cuffs,
neckline, sleeve style, weight, flared, belt, waterproof, formal or
casual, age, pockets, sport, washable....

You can play the same game with the other entity types, or
even try to extend this list.

8.2.4 Pre-definition (Stability)

Another implication of record formats, and of the file plus
catalog configuration, is that the attributes applicable to an entity
are pre-defined and are expected to remain quite stable. It
generally takes a major effort to add fields to records.

While this may be acceptable and desirable in many cases,
there are situations where all sorts of unanticipated information

126

needs to be recorded, and a more flexible data structure is
needed.

The need to record information of unanticipated meaning or
format is crudely reflected in provisions for “comments” fields
or records. These consist of unformatted text, in which system
facilities can do little more than search for occurrences of words.
There is no way for, say, a query processor to know which words
in the text name specific things (analogous to field values),
which words specify their relationship to the thing being
described (analogous to field names), etc. Thus, ironically, we
have the two extremes of rigidly structured and totally
unstructured information ⎯ but very little in between.

8.3 Too Many Ways To Represent Relationships

One way to represent relationships is to have two fields in a

record containing data items which represent the two things
being related, e.g., an employee number and a department
number. Unfortunately, this constitutes three ways, not one: we
generally may have a choice of three different records into which
we specify these fields. They might be incorporated into a record
representing either one of the related entities (e.g., a department
number in the employee record, or an employee number in the
department record), or they might be isolated into a new record
defined just for the purpose of representing the relationship (so-
called intersection records).
In the employee records:

EMP-REC: EMP AGE SALARY DEPT …
 Jones 25 20,000 Acctg
 Smith 27 22,000 Sales

In the department records:

DEPT-REC: DEPT MGR EMPLOYEES …
 Acctg Zim Shaw, Cap, Jones, Park
 Sales Dun Smith, Ho, Asp, Cole

127

In separate intersection records:

EMP-DEP: EMP DEPT
 Asp Sales
 Cap Acctg
 Cole Sales

The employee and department fields together constitute the

key (identifier) of such an intersection record. Intersection
records may include additional fields bearing information about
the relationship ⎯ so-called intersection data. A third field,
containing the date of assignment, might occur as such
intersection data in the intersection records shown above.

The actual set of choices available depends on whether the
relationship is binary, whether the relationship is many-to-many,
and whether the system is normalized.

Non-binary relationships (having degree greater than two)
always seem to get handled separately in intersection records.

For binary relations in a non-normalized system (where
repeating fields or groups are permitted), all three options are
available.

In normalized systems, only two options are available for
one-to-many relationships. Since we can’t have a list of
employee names in a department record, that option is ruled out.
And, in actual practice, intersection records are virtually never
used for this case either. The overwhelmingly predominant
practice for this case is to embed the relationship into the records
on the “many” side (i.e., a department name in the employee
record).

Finally, for many-to-many relationships in normalized
systems, there is no choice: separate intersection records must be
used. For example, the employment history relationship (giving
all the departments in which an employee has worked), must be
kept in the intersection records shown above.

These practices lead to different representations for very
similar relationships. Although current assignments and
employment histories both relate employees to departments, the

128

current assignments are invariably embedded into the employee
records, while the history gets a separate record type of its own.

8.4 But Some Relationships Can’t Be Described

8.4.1 Relationships Within a Record

Ironically, while faced with such a plethora of techniques for
representing relationships, we are sometimes unable to specify
everything we want to about the relationships. The syntax of
record descriptions often does not provide any way to express
the structures that may exist within or among relationships.

To understand what we mean by formally modeling the
structure of information, consider a very generalized query
processor trying to deal with records like the following:

EMP

Sam

WEDDING_
DATE

1970

SPOUSE_
BIRTHDATE

1945

SPOUSE

Mary

BIRTHDATE

1940

Presumably the query processor could discover from the

catalog or dictionary that EMP is a key field, and the only key
field, for this record. But it is not capable of understanding the
meaning of the other field names. Thus, if asked what
information was available about employees, it would respond
with a list of four field names, BIRTHDATE through
WEDDING_DATE. If asked what information was available
about a SPOUSE, the processor might be clever enough to invert
the structure and let you know that it could find the
corresponding employee ⎯ but that’s all. It does not know that
there is other information available about a spouse, such as birth
date.

If asked about Sam’s spouse, it could reply “Sam has spouse
Mary.” If asked about Mary’s birthdate, it would reply “no data
available.” But if asked the right question, it might reply “Sam

129

has spouse_birthdate 1945”, totally unaware that this was
information about Mary.

In much the same way, the system would report the wedding
date as a fact about the employee. There is no way to inform the
system that this should not be regarded as a fact about the
employee, nor even about the spouse for that matter, but as a fact
about a relationship between the two of them. As far as the
system is concerned, the fundamental semantic of a record
format implies that the information has the following structure:

EMP

Sam

WEDDING_
DATE

1970

SPOUSE_
BIRTHDATE

1945

SPOUSE

Mary

BIRTHDATE

1940

even though we might believe the information has this structure:

EMP

Sam

WEDDING_DATE

1970

BIRTHDATE

1945

SPOUSE

Mary

BIRTHDATE

1940

There are two relationships here whose existence cannot be

inferred from the record structure description:

• The one between the spouse and his/her birthdate.

130

• The one between the wedding date and the relationship
which represents their marriage.

But even when the relationship can be defined, we are
limited in the kinds of information we can provide about it. In
general, we might want to name three constructs:

• The relationship itself, e.g., MARRIED.
• The role of each element participating in a relationship,

e.g., HUSBAND and WIFE.
• The kinds of elements permitted to play each role (the

domains of the relationship), e.g., MEN and WOMEN.
For human purposes, because we understand a lot of the

semantics behind such words, it isn’t always necessary to be
explicit about all three. If WIFE occurs as a field name, we know
that the relationship is marriage and the domain is limited to
women. The field name ADDRESS explicitly refers to the
domain of things which may occur there; we may infer that the
role is RESIDENCE, and the relationship is RESIDES.
Sometimes we use compounded field names like DATE-OF-
ASSIGNMENT to combine several of these names into one.

Unfortunately, however, record descriptions don’t give us

any regular way to name all three of these constructs, nor to
indicate which ones we are naming. The only tools we can try to
adapt are the record type name and the field name, but this only
gives us two names for three constructs. We tend to use these
two names in all sorts of combinations for relationships, roles,
and domains, making it difficult to design any system facility
using field names to deal with relationships.

Actually, the two names are only available in intersection
records, which are exclusively used to model the relationship. In
most records, only field names are available for these purposes.
Because a record is often a conglomerate of many relationships,
the record type name doesn’t refer to any of them. Instead, the
record type name often just refers to the focal object of these
relationships, e.g., an EMPLOYEE record.

Consider two relationships involving the indicated roles,
with the corresponding domains shown in parentheses:

131

• RESIDES: RESIDENT (PERSON), RESIDENCE
(ADDRESS).

• EMPLOYED: EMPLOYER (COMPANY),
EMPLOYEE (PERSON).

In a real file, say of a bank’s clients, these might be buried

within a single CLIENT record, with just three field names:

EMPLOYERADDRESSCLIENT

The names of the relationships are lost altogether. One of the

field names is a role name, the other is a domain name, and the
third is neither. Both of the role names associated with the client
are also lost.

8.4.2 Relationships That Span Records

Many relationships are represented by matching field values
in two records, i.e., a symbolic linkage (a form of computed
relationship ⎯ section 4.6). Sometimes this linkage must be
traversed just to discover which thing is related, but sometimes it
is only traversed if we need more information about the related
thing.

An example of the first kind would be the case where
employee records and project records both contained department
numbers. It might be the policy that all employees in a
department work on all projects assigned to the department.
Then the way to determine which employees work on which
projects is to match employee and project records on common
department numbers (the relational “join” operation). I.e., you
can’t discover from the employee record which projects he
works on. You have to go over to the project records and find the
ones that have a department number matching his.

An example of the second kind is again provided by the
department number in an employee record. One needn’t go any
further to identify the department to which the employee is
assigned, but in order to find out anything else about the

132

department (such as its name, or the manager) one has to get to
the corresponding department record.

In a conventional record-processing environment, three
things are rarely described about such linkages:

• The existence of the linkage.
• Which record types are involved.
• What the linkages signify, e.g., the name of the

relationship. (This is often implicit in the field names for
the second kind of linkage, but not indicated at all for the
first kind of linkage.)

Thus these relationships are not really modeled, in the sense

that our generalized query processor doesn’t really know how to
traverse them. How can this processor reply to “Which
employees work on which projects?” There’s nothing in any
directory to identify what “work on” signifies. There’s probably
nothing to indicate that there’s any connection at all between
employees and projects.

Or consider the query “What is the name of the manager of
the Accounting department?” A department record is likely to
have a field named MANAGER, probably containing employee
numbers. Who is going to tell the query processor that it ought to
look in EMPLOYEE records to find the name of a MANAGER?

NAME

Smith

EMPLOYEE

9876543

…

…

MANAGER

9876543

DEPARTMENT

Accounting

…

…

(the missing link)

133

Domains

One construct that helps with some of these problems is the
“domain” concept, which is used with some success in the
relational model. It is used in the sense that if fields take their
values from the same domain, then the fields are representing the
“same kind of thing”, and hence imply the basis for some kind of
linkage. This requires that the record descriptions include an
identifiable domain specification in each field description.

Unfortunately, the construct is not used in a very consistent
way, and in any case still has its limitations.

The occurrence of common domains does not identify the
nature of the relationship. Employee records, project records,
and equipment records may all contain fields taken from the
domain of departments; that doesn’t tell us anything about the
nature of the relationships among any of these entities.

A domain name may or may not provide a clue as to what
record type to seek for the related item. There is generally no
discipline that requires domain names to coincide with record
type names for a given entity type. Thus these various fields
we’ve mentioned might all come from a domain named
“DEPARTMENTS”; the record type for these entities might well
be named “DEPTS”, or “DEPT-RECS”. There’s no help here for
our query processor.

Sometimes the domain concept is shifted to refer to
representations, or data types, rather than entities. Thus such
things as employee numbers, or characters, or integers, might get
specified as domains. If “employee numbers” is a domain for
some field, no linkage will be recognized with a field whose
domain is “social security numbers”, even though they might
refer to the same person. If “characters” is a domain, then
spurious linkages will be implied between, e.g., fields containing
names and fields containing addresses.

And, finally, the domain construct is always implemented, if
at all, in terms of simply matching domain names. This totally
fails to allow for overlapping entity types, e.g., domains and sub-
domains. There is no system I know of which will recognize a

134

linkage between one field whose domain is “employees” and
another whose domain is “people”.

Non-symbolic Linkages

Non-symbolic linkages (i.e., those implemented by some
kind of file structure rather than by matching field values) offer
certain advantages.

Their existence is always known (described) to the system.
The description often names the relationship (but not always, as
in hierarchies).

There is always a known path to the related record type.
And a certain kind of validity checking, induced by symbolic

linkages, can naturally be avoided. Namely, a non-symbolic
linkage simply cannot be established to a non-existent entity.
With symbolic linkages, this must typically be expressed as an
explicit constraint, such as “if an employee number occurs in the
manager field of a department record, then there must also exist
an employee record containing that employee number”.

8.4.3 When is it an Intersection Record?

Any two fields in any record represent some kind of
relationship. In the records illustrated in section 8.3, we can
detect such relationships as the following:

• A correlation between ages and salaries.
• A correlation between managers and employees.
• A correlation between employees and departments.

In effect, every record is an intersection record. If it has

more than two fields, it is representing a multitude of
relationships simultaneously. How does the system really know
which of these records is “intended” to represent a relationship?
How does it know that EMP-DEP is the name of a relationship
between employees and departments, but EMP-REC is not the
name of a relationship between ages and salaries?

135

Does the system really know anything about intersection
records, or is it all in the minds of the users?

8.5 And Some Relationships Can’t Even Be Represented

It’s a little discomforting to find, as in the preceding section,

that we have some relationships in our database that we can’t
adequately describe in the catalog or dictionary.

It’s far worse to discover relationships that can’t even be
represented in record structures in the database. That is, we can’t
even record the data, let alone describe it.

A record type description is based on the fundamental
premise that each occurrence of a given field (i.e., in each record
occurrence) contains the same type of data item, and hence the
field can represent exactly one entity type. It follows that binary
relations can only occur between two entity types (or within one
entity type, as in people to people relationships). There is no
provision for (no way to represent) relationships permitting
multiple entity types in one domain, especially when those entity
types have very different naming conventions.

Such relationships certainly do exist. Companies,
government agencies, schools, and people will usually be treated
as distinct entity types ⎯ but any of these might be a person’s
employer. We may treat furniture and vehicles as distinct entity
types, but they share a common relationship to their
manufacturers. As a general example, consider an “owns”
relationship: various kinds of things (employees, departments,
divisions, locations) can own various kinds of things (furniture,
vehicles, supplies, machines, buildings). Potentially each kind of
thing might have a different identifier syntax, in terms of length,
character set, variability, etc. Even worse, their names might
have different qualification structure, e.g., department names are
only unique within divisions, and hence a department name must
always be qualified by a division name. If we start with a simple
form of this owning relationship, where employees or

136

departments own furniture or vehicles, then we have a
configuration like this:

PROPERTY OWNER
Furniture ID Emp Number
Vehicle Num Div Dept

Such a relationship has several interesting characteristics.

For one thing, it has a variable number of fields, depending on
whether the owner is an employee or a department (in relational
terms, this is a relation of degree two and a half, on the average).
Secondly, the terms “furniture id” and “vehicle num” would
typically occur as field names; in this file, different occurrences
of these “records” may have different field names associated
with them. Furthermore, one does not know how to interpret a
field (or even how long it is, or how many there are) without
knowing the type of entity represented there. Here is a case
where the type of an entity is itself useful information to be
obtained from the database; one should be able to ask “what is
the type of the owner of vehicle ABC123?” And, if you just
inquire about the owner of that vehicle, you should be provided
with a two-part answer: the type and the name.

In general, record formats can’t accommodate the case
where:

• A given kind of fact (e.g., who owns that?) might

involve several types of entities.
• Each of these entity types has a different representation

(length, data type, etc.) for its names. (Even if they had
the same representation, the format only works if the
names are unique across all the entity types. It’s no good
if a furniture identifier might turn out to be the same as
some vehicle number.)

• Or, even worse, the different entity types need different
numbers of fields to represent them.

137

One “solution” that record processing might force on us is to
create artificial super-domains or super-types, one containing all
owners and one containing all owned things. (And this presumes
the system permits us to deal with types and sub-types in the first
place, e.g., owners and employees.) A new and artificial
identifier would have to be created applying to everything in the
domain; employees and departments would have to acquire new
“owner numbers”. The “owns” relationship would have to be
recorded using these new identifiers, rather than more familiar
employee numbers or department names. The same would apply
to all owned things; they would acquire an arbitrary “property
number” as another synonym. Furthermore, whenever these
domains got extended (e.g., to include locations as owners), then
a whole new set of owner numbers must be assigned to these
other entities.

Another “solution” that fits the record oriented base is to
partition this example into four relations:

• employees own-1 vehicles,
• employees own-2 furniture,
• departments own-3 vehicles,
• departments own-4 furniture.

This approach also has interesting consequences. A single

relationship name (“owns”) has been replaced by four, which
users have to learn to discriminate between. What used to be a
simple inquiry (“who owns vehicle ABC123?”) now requires an
interactive dialog, or some conditional programming statements:
“which employee owns-1 vehicle ABC123?” “if nobody, then
which department owns-3 vehicle ABC123?” To ask that, you
now have to know in advance all the kinds of things which might
be owners, and which is the appropriate form of the “owns” verb
for each.

And integrity constraints get much more complex. If a thing
can have at most one owner, then in the original example it was
sufficient to specify that “owns” is a one-to-many relationship.
Now we have to specify that for each of the four new
relationships, plus the constraints:

138

• a vehicle may be owned via own-1 or own-3, but not

both;
• a piece of furniture may be owned via own-2 or own-4,

but not both.

Finally, if these domains are extended to include more entity

types, then all these problems explode quite rapidly.
[Chen] avoids dealing with this problem by using the term

“entity set” loosely, sometimes referring to an entity type and
sometimes to a domain of a relation. There is always the unstated
assumption of a homogeneous naming convention over the
whole set.

8.6 Do Records Represent Entities? Or Relationships?

If we use records to model reality, it is fairly natural to

assume that we intend a record to represent an entity. By this I
mean we might expect to find a one to one correspondence
between instances of records and entities (within the sphere of
interest; the database does not model the whole world). I will
refer to this as the modeling assumption.

Several questions arise. The difficulty of modeling entities
that belong to several entity types has already been mentioned.
Other questions follow.

8.6.1 No Record, No Entity?

A corollary of the modeling assumption is that if something
is not represented by exactly one distinct record, then it is not
considered an entity. How well does that jibe with our intuitions
about entities?

We might have too many records. There is no discipline
preventing the definition of several record types (or relations, in
the relational model) corresponding to one entity type. That is,
we could have several record types defined over the same key,
with each record type containing different attributes of the
subject entity. One might be tempted to do this for economic

139

reasons, e.g., to group together attributes that tend to be accessed
together, or to physically segregate rarely used data. Regardless
of the motivation, such a configuration is permitted in all record
based systems I know of. Thus none of these systems really has a
well-defined semantic establishing a one to one correspondence
between entities and records.

Conversely (and ironically), there is actually no discipline
which requires any record at all for an entity. This can occur (in a
normalized system) if there didn’t happen to be any single-
valued information about the entity. Suppose one had in mind to
treat projects as entities, but all the information to be maintained
about them turned out to be multi-valued (in relational terms, we
find no functional dependences on projects). That is, our projects
can have multiple managers, multiple objectives, multiple start
and stop dates, multiple budgets, and so on. Each such fact needs
to be maintained in a distinct intersection record, and there might
be no motivation to define a single record type or relation to
represent the projects themselves. One would have record types
(relations) called “project-manager”, “project-objective”,
“project-dates”, and so on, but none called simply “project”.

In general, if “being the subject of information” is the
criterion for thinking of something as an entity, then there are
often many entities which are not represented by their own
record types.

There are other, more common situations where we don’t
have any distinct records representing certain things. These are
the things we intuitively think of as attributes of other things,
such as salaries, colors, birthdates, etc. Unfortunately, apart from
the listing of examples, I find it difficult to identify precise
criteria for deciding whether something is an entity, and whether
it is to be represented by a record (obviously, I’m still not sure if
those are the same question).

8.6.2 If It Has A Record, It’s An Entity(?)

Another corollary to the modeling assumption is this: if we
find some things which are in one to one correspondence with a

140

set of records, then the records are representing those things, and
those things are entities.

By this reasoning, anything corresponding to a unique key in
a record is an entity. (Those of you familiar with the relational
model may recognize that these are the things that become the
“subjects” of relations via an analysis of functional
dependences.)

Such a rule may not always be intuitively satisfying.
Consider a ternary relationship expressing an examination
schedule, in the form

ROOMTEACHER PERIOD

key

key

The combination of a given teacher and a given period can

occur at most once. Hence this pair qualifies as a key, and it
uniquely determines the corresponding room (i.e., the pair is the
subject of a functional dependence).

Similarly, the combination of a given room and a given
period can occur at most once. Hence this pair also qualifies as a
key, and it uniquely determines the corresponding teacher (this
pair is also the subject of a functional dependence).

In contrast, the combination of a given teacher and a given
room may occur many times (in many periods). Hence this pair
is neither a key nor the subject of a functional dependence.

The notions of key, and of subjects of functional
dependences, are unreliable as determinants of entities.
Sometimes the uniqueness of fields arises from auxiliary
semantics having nothing to do with an intent to identify entities.
In this case the uniqueness of teacher-period pairs and room-
period pairs happens to arise from these constraints:

• A teacher can only occupy one room per period.

141

• Only one teacher is assigned to a room for a given
period.

These constraints have nothing to do with “entity-ness”.

There is no reason to consider the teacher-room pair as
intrinsically different (e.g., not an entity) from the other two.
Either all of these pairs are entities, or none of them is.

8.6.3 Are Relationships Entities? Are Attributes?

If all records represent entities, then what entity does an
intersection record represent? It must be a relationship.

Are all relationships entities? Not the ones that are
embedded in the records of other entities, if by representing we
really do mean a one to one correspondence. (If an employee and
his relationship to a department are two distinct entities, then
they shouldn’t be “represented” by the same record.)

Certain arguments are sometimes advanced as to why
intersection records represent distinct entities, such as:

• They represent information which is symmetrically

about both related items, hence shouldn’t be exclusively
in one record or the other.

• There is data maintained about the relationship that is
not directly data about either related item (e.g., quantity
on hand for parts in warehouses, assignment dates for
employment histories). That is, anything about which
data is maintained must be an entity; ergo, these
relationships are entities.

Unfortunately, these generally apply equally well to the one-

to-many relationships which are typically embedded in other
records (an employee record is likely to contain a date of
assignment field).

Record-based modeling in general tends to exaggerate out of
all proportion the difference between one-to-many and many-to-
many relationships, especially in normalized systems. That this
is a relatively minor semantic distinction is especially noticeable

142

when comparing such similar relationships as “current
employment” and “employment history”.

It’s difficult to get the three concepts of “record”,
“relationship”, and “entity” consistent with each other. We could
stop claiming that all records represent entities (in a one to one
fashion). Or we could arbitrarily consider some relationships to
be entities and others not, based on no real criterion except how
we arbitrarily chose to model them. (Remember, there is nothing
to prevent a one-to-many relationship from being split out into
intersection records.) Or we might consider all relationships to
be entities, and split them out into distinct intersection records.
This leads to very small records, and begins to approach a
“binary relation” model (section 10.2), or an “irreducible” model
(section 10.3).

If you want to distinguish between relationships and
attributes (I don’t, but many people do), there are other
problems. Using more or less traditional meanings of certain
terms, it turns out that some intersection records don’t even
represent relationships. They also have to be used for multi-
valued attributes (at least in a normalized system). That is, if cars
can be multi-colored, then this has to be represented in an
intersection record type, with each record recording one of the
colors of one of the cars. This kind of fact is traditionally called
an attribute, rather than a relationship. (Because the colors are
not entities, because they are not represented by records.)

Let me cope with another ambiguity at this point: I am using
the term “attribute” to refer to the association between an entity
and some value, and not to that value itself. (Blue is not an
attribute; but the blue-ness of my car is.) Conventionally, that
association is considered to be neither a relationship nor an
entity. Hence those intersection records represent neither
relationships nor entities.

In addition to being represented by their own records, such
so-called “attributes” can exhibit another characteristic property
of entities (or relationships): they themselves might be the
subject of some information (like intersection data). Thus, the
intersection records required to list the children of employees
might include their birthdays; the intersection records listing the

143

colors of multi-colored cars might include the percentage of a
car’s surface covered by a given color.

To summarize, consider the contradictions in the following
assertions:

• Every record represents an entity.
• Every entity is represented by a distinct record.
• All relationships are entities.
• Some relationships are not represented by distinct

records.
• The “subject” of an attribute is an entity.
• Some attributes are the subjects of other attributes.
• Attributes are not entities.
• Some records represent attributes (and nothing else).

You play the game. See how many contradictory

combinations you can find.
Then decide which of those assertions you’re willing to give

up in order to achieve consistency.

8.6.4 The Create/Destroy Semantic

Does insertion and deletion of records model the creation
and destruction of entities?

The one characteristic of records that might be
informationally meaningful for an entity concept is the
create/destroy semantic. If a record represents an entity, we have
an implication that the lifetime of that entity is explicitly
signaled to the system by the creation and destruction of that
record. If the thing is not represented by a record, then it could
be referred to at any time in other records without any prior
announcement of its existence (the traditional situation for such
things as colors, dates, and most numeric quantities).

This semantic is not always enforced. In some systems it
might be possible to mention a department name in an employee
record without any verification that the corresponding
department record exists. Or it might be possible to delete a

144

department record without regard for existing references to that
department in other records. And, in fact, such “enforcement”
might not always be desirable. It is plausible that an installation
might wish to purge records of employees terminated more than
25 years ago, but still retain other records that happen to mention
such employees.

The creation and destruction of records might have various
semantic interpretations in the real world. Occasionally it might
really signify the beginning and end of an entity (e.g., the birth
and death of a person). More often, however, “create” or
“destroy” are really instructions to the system to “notice” or
“forget” an entity, quite unrelated to the beginning and end of the
entity. A personnel record is created when a person is hired
(which could be interpreted as “create this employee”, but also
as “notice this person, who was born a long time ago”) ⎯
perhaps except when a former employee is re-hired (perhaps no
new record is created at all). And historical records are likely to
be kept long after an employee terminates, or a person dies. Thus
one still has to explain somewhere what semantic is implied by
the creation or destruction of a record.

In structured files, record deletion carries with it problems of
cascading delete (which related records must also be deleted?).
The rules dictated by the file structure have to be very carefully
correlated with the semantics of “existence dependence” among
the real entities.

If we want to think of relationships as entities, then the
create/destroy semantic is inconsistently applied. Some
relationships ⎯ namely those embedded in the records of other
entities ⎯ can be modified by simple update of those records.
For other relationships, however ⎯ namely those maintained in
separate intersection records ⎯ the same “update” might have to
be done by destroying and creating records (at least in those
systems which don’t permit update of key fields).

Thus, in the long run, it’s probably better to specify
explicitly what we intend for the create/destroy semantics of an
entity, rather than relying on the behavior of the corresponding
records in the system.

145

8.7 Distinguishability

Two questions arise here. Do records have to be
distinguishable by their contents? Do they have to be
distinguishable at all?

If some kind of file structure is available, such as ordering or
a hierarchical structure, then that structure can be used to
distinguish records which are identical in content. One can refer
to the first record, or the next after X, or the parent of X, and so
on, without ever mentioning anything about the content of the
desired record.

Even with such capability, some systems do not permit
duplicate records.

In systems without any such file structure, such as the
relational model, records can only be distinguished by their
content. The relational model does in fact require this
distinguishability; duplicate records are not permitted.

Rather than comment on such constraints directly, let me just
illustrate some behavior of real entities which doesn’t conform to
such constraints.

We don’t always need all entities to be distinguishable, even
though we want them to be modeled as distinct. That is, we may
want to know there are several of them, and want to be able to
say distinct things about them in the future, but at the moment
we don’t care which is which. There doesn’t have to be any
difference in the facts we know about them. One example is the
table of organization of a military unit, or a duty roster. The
permanent entities are the jobs, with such attributes as the job
title, salary, experience requirements, etc. One of the transient
facts about a job is the person currently holding it; when several
identical jobs are vacant, the records may perfectly well be
identical. When we hire a typist, we will simply ask for one of
the unoccupied typist records; we don’t care which.

To manage the circulation and inventory of a library we
might have one record for each physical book, but only keyed on
title and author (allowing duplicates). The library might not need
to keep track of each copy individually, but still have a separate
record to indicate who has currently borrowed it. (Many libraries

146

do give each physical book its own distinct “accession number”,
but the point is that this needn’t always be the case.)

In other cases it may be inconvenient to maintain
distinguishability on the basis of field contents. For entities
which are primarily distinguished by order (e.g., lines of text in a
text file), it can be very cumbersome to maintain a sequence field
⎯ especially if two independent processes can be doing
insertions and deletions in different parts of the file. (However,
there is an alternative: instead of modeling order with a sequence
field, one could simulate chaining by including in each record
the keys of its predecessor and successor. This does require that
both adjacent records be locked and updated in order to insert or
delete a record in the middle, and also that some form of null
value is available for use in the first and last records.)

Sometimes identical records can be distinguished in more
complex ways via structure, but still have multiple paths, or
unpredictable path lengths, making it difficult to capture the
distinction in a field format. (E.g., different children may have
duplicate names, birthdates, etc., so long as they are unique
within parent. Thus a child might be uniquely reached on a path
through either parent. If the child’s record has to be distinct on
the basis of its content, then an arbitrary convention has to be
established to select either the mother’s or father’s identifier to
be included in the child’s record.)

Thus it seems at least debatable whether records always need
to be distinguishable, or distinguishable by content.

8.8 Naming Practices

8.8.1 Things and Their Names

Record structures work best when there is an exact one to
one correspondence between entities and their names
(representations), i.e., no synonyms or ambiguities. And they
work best when all entities of a given type have the same name
formats (representation). Under these conditions, it is feasible to
have a single format specified for a field in which these entities

147

might occur. And it is easy to detect references to the same
entity: just match the contents of the fields.

Real entities don’t always behave so simply. The employees
of a multi-national corporation might not all have social security
numbers, or employee numbers (or they might be in different
formats in different countries). But many employees have both,
and some may have several social security numbers. Some books
don’t have “International Standard Book Numbers” (ISBN),
others don’t have Library of Congress numbers, and some have
neither. But many books have both ⎯ and some have several
ISBN’s. And Library of Congress numbers apply to a larger class
of entities than do ISBN’s; they are also assigned to films,
recordings, and other forms of publication, in addition to books.
Oil companies have their own conventions for naming their own
oil wells, and the American Petroleum Institute has also assigned
“standard” names to some wells ⎯ but not all.

For all practical purposes, record systems can’t cope with
partially applicable names. In order to use records for an
application, it is necessary that some naming convention be
adopted which applies to all occurrences of the entity type.

Synonyms are not really managed at all, as far as the
structure and description of data are concerned. If fields in two
different record types contain employee numbers, then the
system can perceive that some of these records might refer to the
same person. (This is, in fact, the fundamental mechanism for
expressing relationships in the relational model ⎯ matching
field values imply that two records are related, and can be
“joined”.) But if one record type contains social security
numbers instead, then this knowledge is lost. As far as the
system is concerned, there are no potential relationships here. It
is only in the minds of users, and in procedural logic buried in
programs, that any suspicion lurks that these might in fact refer
to the same people.

And in all of this, we haven’t bothered to mention simple
synonyms. Many skills, jobs, companies, people, colors, etc.,
etc., have more than one name. We might have to deal with them
in multiple languages, as well. We have many ways to represent
the same date. Quantifiable things are written in different ways

148

depending on the unit of measure, data type, number base, and so
on. Our systems are usually inconsistent in handling these: they
will help with such things as conversion algorithms in some
cases, but not in others.

It can be very difficult to model, in a record based system,
the knowledge that different representations in different records
might refer to a single underlying entity (cf. [Stamper 77], [Hall
76], [Falkenberg 76b], [Kent 77a]).

Perhaps the most blatant illustration of this is our inability to
manage mailing lists. I don’t know how to explain to my non-
technical friends why sophisticated modern computers can’t
eliminate the duplications in a mailing list. The most trivial
variation in the way a person writes, abbreviates, or punctuates
his name or address is enough to confuse the system, and prevent
it from recognizing references to the same person.

8.8.2 Structured Names

Additional confusion arises when the synonyms of an entity
exhibit different kinds of structure. A person’s name might be
structured into three fields for first, middle, and last names; his
other synonyms are single fields: employee number, social
security number. A date (if you will accept that as an entity) has
three fields in the traditional representation, but only one in
Julian notation. (A Julian date is a single integer combining year
and day of year: the last day of 1977 is 77365.) Now, every
relationship involving a person or a date will have an uncertainty,
not only with respect to the data items the fields might contain,
but also with respect to the number of fields occurring in the
record. Thus a binary relationship between people and dates
(e.g., birthdates) could be represented in two, four, or six fields,
depending on the representations chosen. But it is still
fundamentally a binary relationship. Thus there is potentially a
poor (and unstable) correspondence between the degree of a
relationship and the number of fields used to represent it.

Note that this differs from an earlier situation (section 8.5)
where we had different kinds of entities. Here we have the same
entities, but different names.

149

8.8.3 Composite Names and the Semantics of Relationships

Composite (e.g., qualified) names occurring in records tend
to confuse the purpose and semantics (and degree) of the
relationships being represented. This is especially noticeable
when the composite names are themselves based on
relationships. Consider, for example, the naming of employee’s
dependents by the two fields consisting of the employee
identification plus the dependent’s first name (as in section
3.3.2).

Redundancy

The dependents in this illustration might occur in any
number of relationships, being related, e.g., to benefits programs
for which they are eligible, histories of claims and payments,
employees responsible for them as counselors, other employee
records because the dependents are themselves employees, etc.
From an informational point of view, the employee on whom the
person is dependent comprises a distinct, independent
relationship. Yet, due to the naming convention, this information
is gratuitously carried around in all the other relationships. For
all of the other information, there is a single well-defined
relationship that must be accessed to get the facts; but for this
particular information, any relationship will do. (Of course, that
gratuitous information would suddenly disappear if the naming
convention for dependents was switched from qualified naming
to social security numbers.)

A basic information model should be able to represent
dependents as individual entities in these relationships, without
dragging their related employees into every such context. If it is
useful for applications to see dependents so identified in various
relationships, then it is appropriate to define such derived
“views” for the benefit of these applications. But the underlying
information model need not confuse relationships with
identification. A given relationship (e.g., between a dependent
and a benefit program) exists independent of the means of

150

identifying the dependent. That relationship should not be
perturbed by problems or changes which might arise in the
identification scheme.

Degree

And the degree gets confused. The relationship between a
dependent and a counselor is nominally a binary relationship, but
it has three fields, two of which identify employees. In a certain
sense, one of them is “really” there as part of the intended
information, while the other is a “phantom” introduced by virtue
of the naming convention. This phantom employee would
disappear if dependents were to be identified by social security
number instead of a qualified name. (Does the degree of the
relation depend on the naming conventions used?)

Domains, Implied Relationships

In the relational model, a potential linkage (relationship) is
implied when two fields take their values from the same domain.
A join operation is not permitted unless the compared columns
come from the same domain; this is supposed to insure that the
“same kinds” of things are being compared. However, domains
can only be specified for single fields (columns); there is no
mechanism for indicating that multiple columns represent
“entities” from a single domain, as is the case with composite
keys. Thus, in the present example, dependents are identified by
two fields, one from the domain of “first names” and one from
the domain of “employee numbers” (or “employees”). Nothing
in any record description would mention a domain of
“dependents”. If joining is permitted on multiple fields
simultaneously, then these records could be joined with any
records also containing two fields whose domains are
“employees” and “first names” ⎯ no matter whose first names
they might be: the employee’s own, his dependent’s, his
manager’s, or anyone else who might share a relation with him.
There is no way to constrain records to be joinable only with

151

other records that refer to dependents; hence, any number of
spurious relationships might be implied.

The following is a valid join. What does it signify?

EMP-NUM FIRST-NAME

a dependent

AGE …

some facts…

EMP-NUM FIRST-NAME

an employee

DEPT …

some facts…

LAST-NAME

8.8.4 The Reducibility Ambiguity

The theory of irreducible records (which, in the logical
development of this book, isn’t explained until section 10.3),
encounters a severe ambiguity, which can be blamed precisely on
the use of composite names (including qualified names). This
highlights the confusion over which entities are involved in a
relationship, and which facts are actually being represented in a
record; and it illustrates how such an analysis is unduly affected
by the choice of names for the entities involved.

Consider a person’s birthday. On the face of it, this is an
elementary fact ⎯ a simple binary relationship between a person
and a certain day in the past. And, if we happen to represent
dates in Julian notation (one field), then birthday actually has the
structure of an elementary fact. But if we choose to change the
naming of the date to the more conventional notation involving
three fields, then we have a record containing four fields. This
record can now be reduced to three binary records:

• Person and year,
• Person and month,
• Person and day of month.

152

The original birthday record can always be recovered by
joining these three.

The same analysis, and ambiguity, applies whenever a
composite naming convention is selected for an entity. City of
birth, for example, is an irreducible fact if globally unique city
codes are used; it is reducible if the city is identified by the
composite of, e.g., city, state, and country names.

The analysis of the structure of information will always be
confused and ambiguous if carried out in terms of record based
concepts such as fields and data items, rather than in terms of the
underlying entities. Composite names are in general not
precisely equivalent in function to simple unique identifiers for
the same entities. Composite names almost always convey
additional information; when used in lieu of simple names they
necessarily change the underlying structure of the information. A
simple name simply designates an entity; a composite name does
that, but it simultaneously informs us about other related entities.
A city code simply designates a city; the conventional notation
may additionally tell us the state and country in which it is
located. A Julian date simply designates a certain day (if we
don’t bother to do certain computations); the conventional
notation additionally tells us the year and month in which it
occurred, as well as the day of the month.

This dual role of composite names precisely parallels the
ambiguity of reducibility. In the role of designating a single
entity, it could be part of an irreducible fact; in the role of
providing auxiliary information about related entities, it leads to
reducibility.

This kind of duality leads [Chen] to classify relations into
two types, regular and weak, depending on whether the entities
involved are identified by simple or qualified names. This is a
curious situation: the nature of the relation is considered to be
different according to the method of naming the related entities.

A precise model of information should distinguish carefully
between the structure of entities being modeled and the various
structures of names that might be associated with them. This
implies a distinction in the model between entities and traditional
data items.

153

8.8.5 Another Ambiguity

“Intersection data” ⎯ data about relationships ⎯ also leads
to irreducible records with three fields, with two of the fields
serving as a composite key. For example, the nature of the
kinship between a dependent and an employee would be
represented as:

KINSHIPEMPLOYEE DEPENDENT

key

Unfortunately, this configuration is indistinguishable from
the form in which information is recorded about entities that
happen to have qualified names. If, as earlier, dependents are
identified via a qualified name including the related employee,
then the age of the dependent would be recorded as follows:

AGEEMPLOYEE DEPENDENT

key

This fact is really about the dependent alone, while the
previous one was about the relationship between the dependent
and an employee. But the structure of the two in “irreducible”
form is indistinguishable. Thus, if naming conventions are not
separated out from entity representation, “irreducible” records
still do not model the structure of information unambiguously.

To see the significance, compare what happens to the
preceding two structures if dependents were named simply, e.g.,
by social security numbers.

In unreduced records, a composite key is likely to be serving
both roles simultaneously. It would not be unusual to see the two
records shown above combined into one (since they have the
same key), containing both age (a fact about the dependent) and

154

kinship (a fact about the relationship). It is thus ambiguous as to
which entity is really represented by this record.

8.9 Records Are Useful

The record concept does serve a useful function in defining

certain groupings of information.
In actually doing data processing, a record constitutes a

package of information to be inserted or deleted, according to
some pre-established conventions (via record type descriptions).

Such packages of information are also useful in managing
the different views which different applications have of the
underlying data, and in controlling the subsets of such data
which different applications are authorized to access.

This is still another function of the record type name: it
names a particular grouping of information, for such purposes as
view or authorization management. This is much more
appropriate than some of the other significances attached to the
name, which is sometimes taken to signify a subject (entity type)
and sometimes a relationship.

8.10 Implicit Constraints

It’s also worth noting that, because a record gets created or

destroyed as a unit, it imposes an implicit constraint on the
various pieces of information collected in the record. In
particular, it imposes 1:1 correspondences between various sets
of entities. Maintaining an employee number, department
number, and salary in the same record guarantees that the set of
employees which have salaries is exactly the same as the set of
employees which are assigned to departments (in the absence of
null values, of course). This is a hidden constraint that one might
argue should be asserted explicitly in an information model.
(There’s nothing wrong with implementing that constraint by
storing the data in record structures.)

155

9 The Other Three Popular Models

n this chapter we comment briefly on the relational,
hierarchical, and network models. There are two excuses for
the brevity of this chapter. First of all, I don’t really explain

the models, but just make some comments about them. Secondly,
most of my concerns have been factored out to the previous
chapter: much of what I’ve said about records carries over into
these three models.

To get more information about these data models, I would
suggest the following as starting points: [Date 77], [Martin],
[Chamberlin 76a], [Taylor], [Tsichritzis 76,77], and [Senko 77a].

“Ambiguity” is the principal theme of this chapter. Most of
the comments on the three models focus on the diverse views
from which each of them may be seen. When reading the
literature on these models, try hard to get an understanding of the
particular definition the author has in mind for the model in
question. Try to determine which features he assumes are
included, and which are not. It can be quite an experience to
compare several papers nominally dealing with the same model.

9.1 The Relational Model

There is a mathematical definition of a relation, which is

essentially the idea of a tabular structure. A relation of degree
three, such as the one among parts, suppliers, and warehouses,
may be represented as the set of rows in a table ⎯ i.e., as a set of
triplets, with each triplet naming one part, one supplier, and one
warehouse.

The pure form of the mathematical relation allows a single
box in the table to contain a set of things (a person may be
related to the set of his children, with all their names listed in one
square of the table). The relational discipline of “first normal
form” excludes this from the relational model.

Such formally defined relations (tables) do not always
correspond exactly with the intuitive concept of relationships.

I

156

The correspondence is good in one direction: every relationship
of degree n can be modeled as a table with n columns. But not
every table with n columns corresponds to an intuitively
satisfying relationship of degree n. Many such tables really
model entities (e.g., employees), together with an assortment of
single-valued relationships and attributes for that entity
(department, spouse, salary). The “real” relationships here are
the separate ones between employee and department, employee
and spouse, and employee and salary. It is only in a very formal,
artificial sense that a relationship of degree four exists here.

The most highly visible feature of the relational model is its
tabular data structure. People who take this as its principal
characteristic claim that anything which supports a homogeneous
linear file (e.g., just about any old fashioned record processing
technology) supports relational data. In this view, the relational
model is no different from the record model discussed
previously.

A more significant feature is that all relationships (paths)
among “records” are based on symbolic associations, i.e.,
matching field values. In the model perceived by users, there are
no manipulative operations that depend on pointers, adjacency,
or other hidden forms of linkage. (See sections 4.6, 10.5.2.)

Note carefully that that last claim was not made for all
relationships, but only for relationships between records. One
should realize that there are two mechanisms for expressing
relationships in the relational model: symbol matching, and
coexistence in a row. A very large number of relationships, such
as the one between an employee and a department, are in fact
represented by whatever internal glue it is that holds the fields of
a record together.

Another distinguishing feature is the set-oriented nature of
the operations, which deal simultaneously with sets of records
instead of processing them one at a time.

Still another view, reported by [Robinson], identifies the
relational approach with the use of a language based on the
predicate calculus, such as “Alpha” [Codd 71a].

Functional dependences, a normalization concept, candidate
keys, and similar phenomena are involved in the definition

157

(creation) of relations. They seem to have an ambivalent role on
the fringe of the relational theory. On the one hand, they do
comprise a central part of the theory with respect to the
definition of “proper” relations (cf. [Bernstein]). On the other
hand, prototypes and implementations of relational systems
simply presume that relations are normalized. Although some
mathematical results concerning functional dependences have
been developed ([Delobel], [Bernstein], [Armstrong], [Schmid
75], [Fadous]), there is to my knowledge no existing system
which processes functional dependences. And functional
dependences never seem to be mentioned when the relational
model is compared with others. Furthermore, they seem to be
overlooked by proponents of the relational model themselves,
when they claim that a strong feature of the relational model is
the symmetry between descriptive and manipulative facilities.

Constraints (enforced rules on the valid contents of relations)
sometimes seem to be part of the relational model ([Eswaran],
[Hammer]), and sometimes not.

The “domain” concept itself has an uncertain status. In most
definitions of the relational model, values in a column are
constrained to come from a named domain (generally distinct
from the column name). Furthermore, joins are only permitted
by matching columns that have common domains (perhaps to
insure that a common entity is serving as the “pivot” in the
implied relationship). But some papers, and most
implementations, only have a column name ⎯ no domain
construct. Joins can be formed on any numbers or letters which
can be compared, e.g., one can relate two people if the height of
one is written down in a form that looks like the age of the other.
Anyone 72 years old is related to me, since that’s my height in
inches.

It is sometimes argued that the domain construct limits joins
to “sensible” relationships. Others argue that anything you can
match implies a relationship; sensibility is in the mind of the
relator.

Even when there is a domain construct present, it often does
not attempt to define common entities. All too often, domains are
defined in terms of various classes of character strings (e.g.,

158

integers, complex numbers, alphabetics, etc.). These are almost
as bad as having no domains at all.

More progress: define separate domains for things with
common units of measure, but which aren’t really comparable
entities. [Eswaran] illustrates this by distinguishing the domains
for an employee’s height and his distance from work.

But even if there is some attempt to relate to entities, it is
invariably sets of symbols that get defined, not sets of entities. I
have never seen a relational domain for employees, or for dates.
The domains are always of the form: employee number, or social
security number, or person name, or Julian date, or standard date
⎯ each being a distinct domain. Thus one can’t match columns
on the basis of common entities, but only on the basis of
common names (representations). The matches are thus always
subject to the failures mentioned in section 3.9.2. You can’t
match on the basis of the same people occurring in two columns,
if they are represented by employee numbers in one and social
security numbers in the other.

The construct in the relational model which would come
closest to an effective domain concept would be a unary relation
(e.g., a one column table of city names), linked to other relations
by integrity constraints which require a city to exist in this list
before it can be mentioned anywhere else. The practice of
defining the “domain” of cities in syntactic terms (by data type)
is much weaker: the only constraint really in effect is that a city
is anything with an alphabetic name (section 2.4.3). This domain
is in no sense equal to the set of city names.

9.2 Hierarchies (IMS)

In general use, the term “hierarchy” refers to a system of

stratifying or ranking things one above another. Upper, middle,
and lower class represent the hierarchical structure of certain
societies. The various titles within the British nobility comprise
another hierarchy. [Smith 77a] speaks of a “hierarchy of
relations” in this sense.

In a more restricted usage, the term can mean a tree-like
system of relationships that tend to branch out in one direction.

159

An organization chart is an example: a person may have several
subordinates, each of whom may in turn have several
subordinates, etc. Or a parts breakdown: an item is made up of
several sub-components, each of which in turn is broken down
into its own sub-components, and so on until the elementary
parts are identified. These trees represent “one-to-many”
relationships. Traversing the tree in one direction, a person may
have many subordinates; but going in the other direction, a
person can have only one superior.

Trees might represent relationships among different kinds of
things, as in the grammatical analysis of a sentence. Subordinate
parts of such a structure might represent various kinds of clauses,
phrases, grammatical classes (nouns, verbs, etc.) and, finally,
individual words. A certain kind of thing, such as a noun phrase,
might occur at various levels. It might be a direct constituent of
the sentence, or it might be a subordinate part of a clause, and so
on. Individual words might occur at any depth in the tree,
depending on the complexity of the grammatical structures in
which they occur.

A further restriction on the hierarchical structure fixes the
levels on which various kinds of things may occur. Each kind of
thing occupies one specified level in the structure; things of the
same kind cannot occur at different levels of the hierarchy. A
corporate structure might be represented in this way, with the
corporation at the top, its divisions at the second level, the
departments on the third level, and the employees on the fourth
level. While a given kind of thing cannot occur on more than one
level, several kinds of things might occur on the same level. The
corporate tree might also have on the third level the products
manufactured by each division, and on the fourth level it might
also have the capital equipment owned by each department.
Hierarchies in which the same kind of thing might occur at many
levels, such as the personnel organization chart, the parts
breakdown, and the sentence analysis, do not fit this restricted
structure.

The common jargon for describing such structures has
absorbed some very mixed metaphors. The structure is described
as a “tree”, but it is almost always perceived upside down, with

160

“root” being a reference to the top of the tree. In addition, the
terms “parent” and “child” are frequently used to denote relative
positions in the tree. In the corporate structure, a department is
the “child” of a division, and the department is also the “parent”
of an employee.

The “hierarchical data structure” supported by such systems
as IMS corresponds to the most restricted form we have
described. It is a tree-like set of one-to-many relationships, in
which each kind of thing occurs at a single specified level of the
hierarchy. One database (or file) in IMS consists of a family of
trees, each having the same “pattern”. Thus, one file may contain
a number of corporate trees of the form described earlier. At each
node (junction) of the tree corresponding to some object, there is
a “data segment” whose fields contain information about that
object. For example, a data segment at the division level of the
corporate tree might contain the division name, the name of its
president, and its headquarters location.

IMS uses the term “record” in a different way than I have in
this book. An IMS “record” (sometimes called a database
record), consists of one entire tree, from one “root” segment
through its lowest related segments. In our example, it would
include all the data about one corporation and its substructure.
My use of the term “record” ⎯ a contiguous sequence of fields
transmitted as a unit ⎯ corresponds more closely to an IMS data
segment.

The one-to-many relationship is central to the IMS concept:
a segment has exactly one parent segment (except a root, which
has no parent). However, IMS does allow the definition of
structures that are not so constrained. Using a construct called
“logical relationships” one can, for example, define a department
segment as being subordinate to a “geographical region”
segment as well as to a division segment. Thus a department
might in fact have two parents: a division and a region. Logical
relationships can also be used to (indirectly) represent many-to-
many relationships, such as the one between students and
classes. While such structures can be defined, programs cannot
process them (as a single file). For processing purposes, it is
necessary to define subsets of the data (“logical files”) which

161

only encompass tree-like structures. Such a file might see
departments as subordinate to divisions or to regions, but not
both. Thus the IMS concept of tree-like structures is imposed on
the files which programs can process, but not necessarily on the
underlying data maintained by IMS.

On the other hand, a program can process several such files
at the same time. It can in fact perceive that a given department
is subordinate to a certain division and also to a certain region,
by looking into the two logical files. (Technically, one can claim
that it is not the “same” department segment that has these two
parents, since a separate segment is perceived for the department
within each file.) Thus, while the IMS data model is generally
held to be a tree-like hierarchy, it can in fact sometimes appear to
be a more complex structure.

Curiously enough, in some respects the IMS structure looks
less complex than a hierarchy. For data retrieval, the file looks
essentially like a flat, linear sequence of segments. There is a
standard, IMS-defined ordering of these segments (top to
bottom, left to right), and data retrieval operations are defined in
terms of this sequence. The principal operations supported by
IMS consist either of retrieving the segments sequentially or of
skipping forward to the next segment of a specified type
containing a specified value. The semantics of retrieval
operations are always explained in terms of this linear ordering.
Certain operations which might be thought characteristic of tree
structures are not provided, such as moving upward (from a
segment to its parent), or detaching a sub-tree and re-attaching it
at another point. (Strictly speaking, it is sometimes possible to
move “up” as well as “down” over certain data, if appropriate
logical relationships are defined and a separate file is used for
each direction of travel.)

The situation with IMS and hierarchies is the same as with
most implementations of data models. There usually are
important differences between the implementation and the naive,
abstract view of the data model. Several implementations of the
same data model may behave quite differently. In general,
criticisms and comparisons should begin by clarifying whether
the subject in question is a data model or an implementation.

162

9.3 Networks (DBTG)

They aren’t the same: networks and the DBTG model. I’ll

come back to that soon.
To me, the central semantic innovation of DBTG is the

named relationship ⎯ that’s what their “sets” really are. It is the
only major model which provides this as an integral part of its
semantics, but its significance seems to be largely unnoticed
(although Bachman has remarked “I consider data structure sets
as representing natural relationships which exist in the real
world” [Bachman 75]).

Unfortunately, DBTG only grants such status to relationships
that are one-to-many. Many-to-many relationships still have to
be recorded in “intersection” records; in these cases it is the
records, and not the sets, which represent the relationship. It is
sometimes argued that DBTG supports many-to-many
relationships by providing such a mechanism, but in fact the
system does not know anything about this. The system doesn’t
know the difference between an intersection record and a record
that happens to be a “member” in several sets (see section 8.4.3).
DBTG doesn’t “support” many-to-many relationships; it doesn’t
even know that they are there.

Some people equate DBTG with a ring-structured
implementation of it, and they deplore its “spaghetti” of pointer
chains.

Still others focus their critical comparisons on the
manipulative language specified in the DBTG proposal. Such
critics fail to see the possibility of developing a better language
(exploiting the semantics of named relationships), much as a
language like SQL shields users from relational joins and
projections. Such critics also overlook the disclaimer on page 7
of [CODASYL 71].

In particular, some associate DBTG with a procedural
language, contrasting it with the set-theoretic language of the
relational model. The procedurality is sometimes labeled
“navigation”.

163

There are criticisms that focus on parts of the DBTG
proposal which have nothing to do with the data structure (things
like database keys, currency indicators, realms ⎯ cf. [Engles
71]). Objections to such features should not be misconstrued;
they are not objections to the basic model.

The developers of DBTG judiciously chose the word
“network”, rather than “graph”. “Graph” is a mathematical term,
having some well-defined and much studied properties.
“Network” informally conveys the same idea as “graph”, without
any real obligation to retain the same properties. Lest anyone
confuse the two, let me indicate how a DBTG network differs
from the general form of a directed graph with labeled edges:

• Nodes in the network are not elementary items. They are

records. Thus much of the data content is already
aggregated out of the graph structure.

• Nodes are partitioned into classes called “record types”.
• Many edges in the graph bear the same label. A DBTG

“set” consists of all the records connected by edges
bearing the same label. That label is the name of the set
(and also the name of the relationship that associates
these records).

“Owners” are the records at the tails (sources) of the directed

edges. “Members” are the records at the heads (targets) of the
edges. A DBTG “set occurrence” consists of one owner record
and all the members to which it is connected by edges labeled
with the set name.

• All edges bearing the same label must emanate from

nodes of one type (a set has only one owner record type).
• A node may not be the target of two edges bearing the

same label (a set is a 1:n relationship).
• An edge may not connect two nodes of the same type (a

set’s member record types may not include the owner
record type).

164

Hence a homogeneous graph (all nodes of the same type),
such as an organization chart, cannot be directly represented in
the network. It can be represented indirectly by introducing an
“intersection record” as a second record type, and using two
labels: one for the “from” sense of the association (manages),
and one for the “to” sense (is managed by).

The same device is required to represent m:n relationships. It
is sometimes claimed that such constructs “represent” a
generalized graph in the network; all you have to do is visualize
the intersection records as part of the edge structure, and not
think of them as nodes.

• As a corollary, an edge cannot connect a node to itself.

Now a caveat: not everything I’ve said about DBTG is true.

Since I first wrote this material, some changes to the Codasyl
specifications have been adopted, and others are being
considered. Which only goes to show that we are dealing with a
moving target. You have to be very careful when discussing “the
network model” to establish whether you have in mind some
fixed, abstract structure, or whether you are referring to the
Codasyl specifications, and, if the latter, which version.

165

10 The Modeling of Relationships

aving examined some of the major data models, we are
now in a better position to explore some other issues and
problems in the modeling of relationships.

10.1 Record Based Models

As suggested in section 8.3, the record oriented approach
fosters an asymmetry in the treatment of relationships. One-to-
many relationships are given fundamentally different treatment
from many-to-many relationships. [Martin] refers to many-to-
many relationships as “complex plex structures”, and says “The
reason for making the distinction between simple and complex
plex structures is that the latter need more elaborate methods for
representing them physically.”

This treatment arises from the traditional aversion to
repeating fields in a record, and from the convenience of
lumping two things into the same record when there happens to
be a singular relationship between them.

These options are all in addition to representations of
relationships by means of file structure. These might include
such techniques as record sequencing within a file, or placement
within a hierarchy or CODASYL network. Even here the choices
are constrained by the semantics of the relationship. Structural
representations typically can only be used for certain kinds of
relationships, and not for others. For example, the structural
representation in hierarchies (of the IMS variety) may not be
used for relationships between records of the same type.

The difficulty with respect to information modeling is what
to do with this plethora of options ([Codd 74], [Nijssen 75]).
Why is it necessary to make such choices? What are the criteria?
Do the criteria have anything to do with the semantics of the
information, as distinguished from the economics of storing or
processing the data? Do all users have to know which options
have been chosen, and to adapt their processing accordingly? Is

H

166

there any implied unavailability of other options, e.g., could one
still retrieve a department record containing a list of employees?

The techniques an application employs need only be
concerned with the complexity of a relationship in the direction
the application is traversing it. The only difference it really
makes to the application is whether it should expect, and allocate
space for, one or many items in response.

Unfortunately, the choice of representation too often does
show through to impact the way users use the information, and
the way application code has to be written. If someone wanted
information about all employees in a department, there are likely
to be different kinds of paths for current and for past
assignments. For current assignments, we can go directly to the
employee records; for past assignments we must navigate
indirectly via the employment history intersection records. Yet in
both cases we are dealing with a relationship between employees
and departments. In this respect, listing the employees in a
department need be no different from listing the parts in a
warehouse. It doesn’t matter to these applications that the parts
might also be in other warehouses, whereas the employees
cannot also be in other departments (i.e., when traveling in the
complex direction, it needn’t matter whether the relationship is
1:n or m:n).

In current technology, such applications have to use two
conventions for these cases, following direct linkages for the
employees in a department, but detouring via intersection
records for the parts in a warehouse. And, if corporate policy
changes to permit employees to have several departments, then
the first application has to change the way it asks the question,
even though the question and the answer are unchanged.

The choice of representation also affects the way
applications do updates. For example, moving an employee from
one department to another is done by a simple record update, if
the department number is kept in the employee record. But if the
relationship is kept in an intersection record, then changing the
department number is changing the key. Changing keys creates
problems in many systems, and often is not permitted at all. In

167

such cases, this “update” must be done by deletion and insertion
of records.

For descriptive purposes, it might be desirable to seek a
method for declaring such relationships and their semantic
characteristics directly, without having to choose among such a
variety of representational alternatives.

10.2 Binary Versus N-ary Relationships

An “n-ary” relationship has degree n. “Binary” and “ternary”

relationships have degree two and three, respectively.
Relationships of degree greater than two can be described as

combinations of binary relationships. This follows from the
observation that an instance of a relationship is itself a thing that
can be related to other things. There are two ways of reducing n-
ary relationships to structures of binaries. We will describe one
here, and introduce the other in section 10.4.

Consider a ternary relationship among parts, warehouses,
and suppliers, wherein a given part may be ordered from certain
suppliers for one warehouse and from different suppliers for
another warehouse. We can start with the binary relationship
between parts and warehouses, i.e., which part is stored in which
warehouse. Let’s call this relationship “allocations”, and call
each instance of a part assigned to a warehouse an “allocation”.

Notice the influence of language on our thinking. By having
the single noun “allocation” for it, we can comfortably think of
the instance of the relationship as being a thing in itself. Calling
it “a part stored in a warehouse” doesn’t give it the feeling of a
“thing”.

We next define the binary relationship between suppliers and
allocations. This binary relationship literally identifies which
supplier services which allocation. But, through our
understanding of allocations, we know that it really means which
supplier sends which part to which warehouse. We have thus
defined the ternary relationship as a pair of binary relationships,
which we can denote symbolically as PW and S(PW).

We use the following notation: “PW” stands for the binary
relationship between parts and warehouses. “SPW” stands for

168

the ternary relationship between suppliers, parts, and
warehouses. “S(PW)” stands for a particular decomposition of
this relationship; it is the binary relationship between suppliers
and the binary relationship between parts and warehouses ⎯ i.e.,
it is the binary relationship between suppliers and allocations.
For simplicity, we are assuming that one domain is the same as
one category. Also, the ordering of domains is not relevant to this
discussion, and we can therefore ignore permutations of letters.
PW is the same as WP; SPW, PSW, PWS, etc., are also all
equivalent to each other.

Of course, S(PW) is not the only way we could have
decomposed the relationship. An equivalent verbal description of
the ternary relationship is that when we order the part from one
supplier we may have it sent to certain warehouses, while we
may have other suppliers send the same part to other
warehouses. Now we are thinking first of a binary relationship
between parts and suppliers, which we can call “zorgs” (because
I can’t think of a good descriptive noun). Then we construct the
binary relationship between zorgs and warehouses. This time we
have decomposed the ternary relationship into the two binary
relationships PS and W(PS).

And, in similar fashion, we can rationalize a third
decomposition, into the pair of relationships WS and P(WS).

There are always multiple ways to decompose relationships
of higher degree into binary relationships. We have seen the
three possibilities for decomposing ternary relationships. For
degree four, there are 15 different ways: PSWT can be
decomposed into the forms P(SWT), S(PWT), W(PST), and
T(PSW), with the ternary relation in each of these being
decomposable three ways, plus the forms (PS)(WT), (PW)(ST),
and (PT)(SW).

An example of the form (PW)(ST) is interesting to look at,
because it illustrates how instances of relationships are
themselves things which can be related to each other. We can
take P and W to be parts and warehouses as before, with the
relationship PW still called “allocations”. S is still suppliers, and
T is now truckers: PSWT is the relationship that certain suppliers
use certain truckers to deliver certain parts to certain warehouses.

169

There is a relationship ST between suppliers and truckers ⎯
which suppliers use which truckers ⎯ and we can arbitrarily call
these “sources”. A “source” is a combination of one supplier and
one trucker. The relationship PSWT can now be expressed as the
binary relationship (PW)(ST) between allocations and sources:
which source services which allocation. This new relationship is
relating instances of two other relationships.

10.2.1 Simplicity

The reason we dwell so long on these decompositions into
binary relationships is that some important data models are
founded on such decompositions. From some points of view
binary decomposition may be the best and simplest way to
describe all relationships.

The main advantage of such decompositions is that they
permit any relationship to be built out of a single kind of
building block (the binary relationship), giving the description of
all relationships a very regular format [Titman]. Hence, it is
“simpler”.

Whether or not you believe that depends on what you mean
by simplicity. Simplicity is very much a subjective notion, and
we can give it at least two interpretations. On the one hand,
simplicity in a descriptive language (for data or programs or
anything else) means minimizing the number of different terms
that can be used in the description, thus minimizing the number
of terms that have to be learned by users and implemented in the
system. The regularity of binary relationships provides this kind
of simplicity. According to this criterion, Roman numbers are
simpler than Arabic, since they use fewer different characters
[C&A 70]. For that matter, binary notation must be the simplest
of all. Also, by this criterion, the simplest computers of all are
Turing machines. Would you like to program your application on
one?

On the other hand, simplicity is achieved when descriptions
can be written concisely, and can be carried on paper and in the
mind as single broad concepts rather than complex bundles of
tiny concepts. This kind of simplicity is provided, for example,

170

in the relational model, which can directly accept a definition of
a PSWT relationship, rather than requiring a sequence of
definitions such as WT, S(WT), P(S(WT)). This kind of
simplicity is achieved at the cost of requiring the system to
understand a larger variety of constructs (i.e., relationships of all
possible degrees). It is often argued that this wealth of additional
constructs is redundant and adds no new function, since
everything can be expressed in terms of the “primitive”
constructs, e.g., binary relationships.

We can further illustrate the concepts, and problems, in a
system for specifying arithmetic expressions. Consider one
language that has terms for expressing addition, division, and
counting, and another language that has all these plus a term for
“average”. Both languages have the same functional capability
for describing things. The first is simpler because it has fewer
terms to be defined, learned, and implemented. But the second
language is obviously easier to use if you want to compute an
average. To average a LIST of values, one writes

X = SUM(LIST) DIVIDED-BY COUNT(LIST)

in the first language, and

X = AVERAGE(LIST)

in the second.

We might observe that each kind of simplicity is appropriate

to a different level in the system. The first language is
appropriate to a low, internal, implementation level of the
system, where implementation cost is of primary concern. The
second language is appropriate to a higher external interface that
is seen by users. Some kind of transformation process is required
between the levels, such as a language translator which takes the
second statement above as written by a user and transforms it
into the first statement above to be executed by the system. This
corresponds, for example, to the implementation of a relational

171

database on top of an interface dealing only in binary
relationships.

This split-level approach has some disadvantages. Since the
direct intent of the user is not transmitted to the underlying
system, the system may not be able to optimize and perform the
function in the best possible way. In the averaging example
above, the system executing the first statement is likely to take
two passes through the list, once to accumulate the sum and
again to count the elements. If the system understood “average”
directly, it would do both in one pass.

In a nutshell, simplicity can mean either a small vocabulary
or concise descriptions. Both have their value.

Incidentally, let me mention still a third kind of simplicity,
which may be even more important than the other two in the area
of data description. This is “familiarity”. The easiest system to
learn and use correctly may well be the one that is closest to
something already known, regardless of how objectively
complex that may be. It is precisely this phenomenon, for
example, which makes the metric system of measurement much
less simple for me (and many of my readers) to use, although it
is obviously simpler by any objective criterion. The trouble with
this approach, of course, is that it is subjective and depends very
much on who the users are. How do you measure it? And does it
require supporting a number of systems, each “familiar” to a
different group of users?

And there is this hazard: the apparent familiarity can also
lead users astray, in those cases where the system does not
behave the same as the thing they are familiar with.

10.2.2 Unnecessary Choices

Another concern arises from the fact that in describing an n-
ary relationship as a composition of binary relationships, one has
to select one of the many possible compositions. That is, one has
to decide whether to specify PWS as P(WS), W(PS), or S(PW).
There is often nothing in the way that users think of this
relationship to prefer one form over the other two. Hence this
arbitrary choice should not have to be made in the conceptual

172

model of the information system. Also, there is a danger that this
form of specification may become entangled in implementation
and performance concerns. The specification P(WS) suggests an
implementation in which people just interested in the
relationship between warehouses and suppliers, i.e., WS, will get
better service than those interested only in parts and warehouses,
i.e., PW. Any such implication in the conceptual model should be
avoided. An administrator should be free to change the
implementation structures and performance optimizations
without having, for example, to respecify P(WS) as S(PW).

10.3 Irreducible Relationships

“Irreducible relations” ([Rissanen 73], [Hall 76], [Falkenberg

76a]) is an area of relational theory which attempts to reconcile
record structures with the requirements of accurate information
modeling. The general idea is to model information in terms of
elementary facts, generally (but not always) leading to binary
relationships analogous to records having just two fields. For
example, an employee record that included his spouse and
birthplace would be reduced to two records, one containing the
employee and spouse and the other containing the employee and
birthplace. The original record can always be recovered from
these by combining the known information about the employee
(in relational terms, by a “join” operation).

This recoverability aspect is the essential test of reducibility.
A record is reducible if shorter records can be defined which can
be so combined to recover the original record. Such a reducible
record has not been decomposed into its elementary facts. In
contrast, an irreducible record is considered to represent one
elementary fact, since it cannot be reconstructed from smaller
units of information. Note that the danger is not that information
will be lost, but that the reconstruction process will generate
spurious (and false) data ⎯ as the next example illustrates.

An example of an irreducible record with more than two
fields would be one representing the ternary relationship between
suppliers, parts, and warehouses (“which supplier ships which
part to which warehouse”). If we try to reduce this to shorter

173

records, e.g., one with suppliers and parts and one with suppliers
and warehouses, we cannot accurately recover the original
information. These short records might tell us that a certain
supplier supplies a certain part, and that this same supplier
services a certain warehouse ⎯ but we can’t be sure that he
ships that part to that warehouse. A reconstruction from the short
records will generate that combination, whether or not it is a true
fact. A similar analysis holds if we try to reduce to other pairs,
e.g., a record with parts and warehouses plus one with parts and
suppliers. Thus in this case the records with three fields are
irreducible ⎯ they represent elementary facts.

This modeling approach has the advantage of modeling the
actual structure of the information. Elementary facts are clearly
identified, and the structure is more describable: a record type
name (relation name, in the relational model) can correspond to
the relationship or attribute expressed in the fact, and field names
can be used to name the roles played by the entities associated by
the fact. The approach still suffers from some of the record
structure problems, e.g., those having to do with synonyms and
with the representation of relationships having multiple entity
types per domain (as mentioned in section 8.8.4).

Reducing records (or relations) to such elementary facts has
a side effect that is considered by some to be a disadvantage.
Keeping things bundled into one record type implicitly enforced
a co-extensiveness constraint. In effect, the set of employees who
earned salaries always had to be exactly the same as the set of
employees who were assigned to departments. By separating
these into independent elementary facts, we introduce the
possibility of adding or deleting one fact separately from the
other. The constraint that had been implicit in the structure now
has to be made explicit, to the effect that employees may earn
salaries if and only if they are assigned to departments.

10.4 Good and Bad Binaries and N-aries

There are some differences of opinion concerning the

relative merits of binary and n-ary relationships, and also
concerning the merits of the relational model.

174

Where do I stand? There happen to be just enough
ambiguities in the definitions of the various models that I cannot
answer that question. I face these dilemmas:

• There are two ways of employing n-ary relations, one of
which I consider good and the other bad. So I can’t take
a stand on n-aries.

• There are similarly two ways of applying a binary
model, again one good and one bad (and one might even
say that the good one isn’t really modeling binary
relationships). No simple opinion here, either.

• Most amazingly, the good n-ary and the good binary
look the same to me! So, when I tell you what I like, I
still can’t say if it’s binary or n-ary.

• And, for good measure, I can’t be sure which of these
models is considered to be relational. (But I’m sure
many of my readers are. I’d love to poll them.)

10.4.1 The Binaries

Many things are simpler when we can deal with things
pairwise, two at a time. Binary relations fit a simple linguistic
model, two objects connected by a relating verb: people own
cars, employees are assigned to departments, parts are stored in
warehouses, etc. They also lend themselves to a natural picture: a
line connecting two points (or nodes).

P W

The pure binary approach forces everything into this pattern,
even when more than two things are involved. This exploits the
fact that relationships are themselves entities, which can then in
turn be related to other things. So, if three things are involved,
we first link two of them to generate a new entity, which then
gets linked to the third thing. There happens to be three distinct
ways of doing this (section 10.2). For suppliers (S), parts (P),
and warehouses (W), these are:

175

P W

S

P S

W

S W

P

I don’t happen to think this is a good approach. One

shouldn’t be faced with making an arbitrary choice among such
alternatives. And the structures get more complex than they need
to be, especially if even more than three things are involved.
When there are four (such as suppliers, parts, warehouses, and
truckers), the number of different pictures to choose from is
fifteen! You can work them out; here’s two samples to get you
started:

P W

S

T

S W

P T

I haven’t had the courage, or the patience, to compute the

number of ways of combining five things.
At any rate, whether you agree with my opinion or not, those

are what I call “bad binaries”.
There is another way to perceive the relationships as entities.

We can imagine that there does in fact exist a single relationship
among the three things simultaneously, and treat that as an entity
in its own right. In [Bracchi], a class of such new entities is
called an “internal set of concepts” (ISC).

In representing the relationship between a part, a supplier,
and a warehouse, each of these is linked to the object
representing the relationship among them:

176

P WS

X

If we want to call this new entity X, we have in effect used

the three binary relationships PX, SX, and WX. There is only
one such configuration, not three to choose from, and we are still
basically using a binary model. Similarly, if Y was a
simultaneous relationship among four things, the configuration
would be represented as the four binary relationships PY, SY,
WY, and TY. Again, there is only one configuration, not fifteen
options.

Let’s refer to that approach as “pseudo binary”. I’ll explain
why shortly.

Some people have modified the binary model in a different
way. The limiting factor in the familiar graph picture is an
elementary bit of geometry: a line segment has two endpoints.
Why should we be constrained by an irrelevant geometric
truism? Why can’t we imagine a “hyper” line segment with
many endpoints, as some kind of generalized connector? We can,
and the resulting structures are called “hypergraphs” [Furtado].
That is, we can imagine them, but not draw them ⎯ at least not
with simple lines. But there is a picturing convention for
hypergraphs, in which a connector is drawn as a box around the
things it connects. Since many of these boxes will overlap
(because a thing might participate in many relationships), there
can be some confusion as to which things belong to which box.
To avoid that, lines are drawn to link things with the boxes they
belong to. (Another reason for the lines is so that they can be
labeled with the role being played by each object in the
relationship.) Thus, a relationship among P, S, and W would be
pictured as the box:

177

P W

S

This appears to be an entirely different approach, but with a

flick of the wrist we can be right back to a familiar picture. This
hypergraph approach is in fact isomorphic with the “pseudo
binary” approach just described. All we have to do is:

1. Flip P, S, and W outside of the box, taking their
connecting lines with them.

2. Shrink the box to a point.
3. Label the new point “X”.
And presto, we have a familiar picture of the relationship

between P, S, and W:

P WS

X

There is one difference: with hypergraphs, one does not have

the ability to treat the connectors (boxes) as being points
themselves, hence they cannot in turn be connected to other
things. Pseudo binaries do have this added capability.

To be consistent, treating relationships as entities requires a
new object to be introduced even if only two things are being
related. That is, a relationship between P and W ought to be
modeled, not as

P W

but rather as

178

P W

Z

This practice is in fact commonly followed when the

relationship happens to be many-to-many, giving rise to so-called
intersection records (section 8.3). But the practice is rarely
employed for one-to-many relationships. Even [Bracchi] fails to
achieve this level of consistency in the treatment of relationships.

Why have I been referring to these as “pseudo” binaries?
There is a certain hoax being perpetrated throughout all of

this. Such models are still labeled as “binary relations” ⎯ but it
is n-ary relations that are being modeled. They have just been
shifted from the lines to the nodes. The pictures look the same
for the pure and pseudo binaries ⎯ they both involve lines
connecting pairs of nodes ⎯ but the semantic interpretations of
the two diagrams are totally different.

In the pure binaries, the lines are serving to represent the
relationships that are being modeled. Just consider what labels
would be written along the lines: they are the names of the
relationships.

Rover Spot

Harry

owns owns

In contrast, in the pseudo binary model the relationships of

real concern are themselves nodes. The lines are serving an
entirely different function, which can actually be seen a little
more clearly by their counterparts in the hypergraph picture.
These lines are merely serving as a kind of internal glue,
connecting a relationship node with each of the things it is
relating. If there are any labels along these lines, they would be
role names rather than relationship names.

179

Harry Spot

Owns

owner property

Thus the similarity between pure and pseudo binaries is very

superficial. While there is a trivial resemblance in the formats of
their pictures, there really is a deep semantic difference between
the two: pseudo binaries are in fact supporting n-ary
relationships, while pure binaries require decompositions into
pairwise relationships. The pure binary approach denies the
existence of relationships involving more than two things at a
time. In that view, the shipping of parts to a warehouse by a
supplier is not a single indivisible fact. It must be viewed instead
as a composition of smaller facts, e.g., fact 1: parts are shipped to
warehouses; and fact 2: suppliers perform fact 1. In contrast, the
pseudo binary view acknowledges the existence of a single
complex fact, and simply draws a picture connecting the fact
with each of its participants.

Despite the pejorative connotations of the term, I hope it’s
clear that I prefer the “pseudo” binary model.

10.4.2 The N-aries

An n-ary relation can be pictured as a table with n columns,
each column having a heading. Consider two different relations,
having the headings

SALARYEMPLOYEE DEPT

and

SUPPLIERPART WAREHOUSE

180

In developing an abstract model of information, one might
have an intuitive desire to indicate which are the “elementary
facts”. One can have an intuitive feeling that the first relation
above is a conglomerate of two elementary facts, since we can
speak of the department of an employee independently of his
salary. In contrast, one might feel that parts, warehouses, and
suppliers comprise a single interdependent fact, since a given
part for one warehouse comes from one supplier, while the same
part for another warehouse comes from another supplier.

Some people make a counter-claim: you can just as easily
perceive that a department having an employee making a certain
salary is in itself a single fact inter-relating three things. Thus we
have some difficulty in objectively sorting out “elementary
facts” from hodge-podges of multiple facts.

There is one objective criterion that has emerged, in the
notion of “irreducible” relations, which we covered in section
10.3. Those are my “good n-aries”.

In comparing irreducible n-aries with pure binaries, one
might find an analogy with linguistic terms: the singular n-ary
form might be likened to the “deep structure” of a sentence,
while the multiple ways of decomposing it into pure binaries
corresponds to the multiple “surface structures” (sentences) that
have the same meaning.

10.4.3 A Vanishing Distinction

To sum up on the issue of binary vs. n-ary: I do not see the
desirability of being limited to purely binary relationships, hence
I prefer n-ary relationships. That does not mean that I defend n-
ary relations ⎯ I only like the kind that are irreducible.

But I’m not opposed to binary relations either. That is, I do
like the pseudo binary model ⎯ which most people still refer to
as a binary model, although it models n-ary relationships.

Have I made that perfectly clear?
It’s really simple: out of all this assortment, I prefer one

model ⎯ which is simultaneously the pseudo binary and the
irreducible n-ary. Let me try to explain why I see negligible

181

difference between them, at least in the essential structure of the
model of a ternary relation.

In the pseudo binary model, we link four objects to model a
relationship among a part, a warehouse, and a supplier:

P WS

X

In the irreducible n-ary relational model, we also have four

objects. There is one record each for the part, the warehouse, and
the supplier, containing information about those entities. And
there is the intersection record with three fields, containing the
keys (identifiers) for that part, that warehouse, and that supplier:

SamPin

(warehouse record)West

intersection recordWest

(supplier record)Sam

(part record)Pin

We can make the geometries of these two representations

look alike. We are only dealing with differences in the portrayal
of the linkages.

In the pseudo binary model, we draw explicit lines,
suggesting some kind of internal pointer mechanism in the
implementation. In the relational model, on the other hand,
linkages are discovered by matching symbols (in this case, the
identifiers in the intersection record match the keys of the other
records). If we draw lines between the matching symbols, we see

182

a topology quite identical to that of the pseudo binary model.
Thus, if we ignore the specific technique for achieving linkages,
the two models look quite alike.

10.4.4 Case Models

There is still another path of development converging on this
general model form. [Furtado] observes that linguistics based
models portray a case structure for sentences that looks very
much like our pseudo binary diagrams. The sentence is the n-ary
relationship object, its constituents are the objects it is relating,
and the lines represent the cases (roles) assumed by those objects
in the sentence.

10.5 Which Relationships Are “In the System”?

In section 2.3 we observed that some information is explicit

in the system, some is implicit (derivable), and we can’t always
sharply distinguish the two cases. The same obtains with
relationships.

10.5.1 Explicitly Defined Relationships

Explicit declaration of relationships permits their properties
(such as those described in sections 4.2 and 4.3) to be specified
directly to the system, to be enforced independently of the
representation of the relationship.

Unless names of relationships are known as part of the data
content of the system, it is difficult to answer such queries as:

• “What relationships exist between x and y?”
• “In what relationships is x involved?”

When the manipulative interface is expressed directly in

terms of named relationships, then there is considerable latitude
in the manner of representing the relationships, with the
alternatives being hidden from the user. Representation options
include:

183

• Symbolic linkages via matching field values.
• Internal linkages such as pointers.
• Inclusion of such linkages with other attributes of the

entities involved (e.g., pointing to or naming each other).
• Inclusion of such linkages in a separate structure (e.g.,

intersection records) that represents the relationship.
• Computational procedures, such as composition of other

relationships, or comparison of attribute values. (Such
procedures could only be used for inquiry, not for
modification of relationships.)

With named relationships, the syntax and semantics of

queries can be made simple and uniform, independent of the
method of representing relationships. (Also, the form of the
query is likely to be closer to the natural language form.) For
example, an inquiry regarding an “is employed in” relationship
could conceivably be handled by a procedure that searches
employment history records, looking for the department to which
the employee was most recently transferred. An assertion that
someone “is employed in” a certain department could be handled
by making a new entry in the employment history to the effect
that the employee was transferred into that department today (or
else the assertion might also provide an “as of” date). Some users
would appreciate not having to know that this was the
implementation of the relationship.

As another example, consider the inquiry “find all
employees located in Stockton”. In a record oriented model
without adequate capability for naming relationships, the user is
obliged to discover that locations are specified in department
records. This user has to formulate a query which selects the
records of departments located in Stockton, and then finds the
corresponding employees. In SQL ([Astrahan 75], [Chamberlin
74]), for example, the query would take the form

184

SELECT NAME
FROM EMPS
WHERE DEPTNUM IN

SELECT DEPTNUM
FROM DEPTS
WHERE LOC = ‘STOCKTON’

In contrast, if the user were provided with a defined

relationship named “located in”, then he need not know whether
location information is contained in employee records,
department records, or division records. This user is simply
interested in who works where; he need not be responsible for
knowing current corporate practices regarding the centralization
of divisions or departments.

This approach works better for inquiries than for updates. To
change an employee’s location, one does have to know whether
employees can move about independently, or are constrained by
the location of their departments or divisions. This knowledge
can be gleaned from the organization of the relations ⎯ i.e., the
functional dependences ⎯ in a relational database. It can also be
specified in consistency rules in a model that describes
relationships directly.

Named relationships need not be implemented by internal
structures such as pointer chains. They could be provided by
means of “macro” facilities in the interface languages. For
example, a macro facility could conceivably be added to the SQL
language, whereby a macro named “located-in” could be defined
to expand into the SQL text illustrated above. An end user might
then formulate his query as “find employees located in
‘Stockton’“, without knowing or caring about macro expansions,
functional dependences, pointer chains ⎯ or even network vs.
relational models.

Of course, that same “located-in” relationship could also be
presented to the user in the tabular form of the relational model.
There could be an interface at which the (apparent) existence of
such a relation is maintained for the user, independent of the
manner in which it has to be materialized from the real
underlying data (cf. [Boyce]).

185

Having named relationships as an integral part of the model
is much the same idea as perceiving the model as a set of
functions [Folinus]. The external user understands the
information system by knowing the names and descriptions of
the functions, the required arguments, and the expectable return
values. The functions correspond directly to the user’s semantic
understanding of the information. The implementation of the
functions is hidden from the user.

The “links” of [Tsichritzis 75a] and the “selection structures”
of [Earnest] also relate to the concept of specifying named
relationships.

10.5.2 Implicit Relationships

There is a disadvantage to systems that deal only in named
relationships. They limit the user to following paths that have
been previously declared by a data administrator, and make it
difficult to follow paths implicit in other data stored in the
system.

As mentioned in section 4.6, if two entities are related to a
third in any way, then that in itself constitutes a relationship
among the first two. One employee might work in the same
department as another. The secretary of a department probably
serves as secretary for each employee in that department.

Attributes can provide such links in the same way as
relationships. If an employee works at a certain location, this
implies that his department has someone working at that
location. If we have a mechanism for establishing that two
attributes are “in the same domain”, then we can infer a
relationship between two entities having the same value of such
attributes (cf. section 8.4.2). E.g., we could infer that a supplier
and a warehouse are in the same city.

Both the domain and the role of the attributes must be
considered, to avoid misunderstanding the significance of the
implied relationship. If an employee was hired on the date his
manager graduated college, we mustn’t infer that they were hired
on the same date, or born on the same date.

186

Other kinds of erroneous inferences might also be carelessly
drawn. If a part is available from a certain supplier, and a
warehouse is serviced by that supplier, we can’t infer that the
part is stocked in that warehouse. (And even if it was, it might be
a different supplier who supplied that part to that warehouse.)
This is the connection trap [Codd 70], whereby an erroneous
inference may be drawn from the “join” of two relationships on a
common domain. This is a user error, not the fault of the data
model, in ascribing the wrong meaning to the results. The user
error arises out of mistakenly taking such relational operators as
“project” and “join” to be inverse operations, expecting that
performing the two in succession returns the original
information. A projection can decompose one relation into two;
joining these two does not necessarily re-create the original
relation.

One of the strengths of the relational model is that all such
“implicitly defined” relationships are readily available, simply
by joining relations on a common domain. It does require,
however, that users correctly interpret the meaning of the joined
relations.

There are some risks involved in the use of symbol matching
to detect implicit relationships. Implicit (computed) relationships
based on symbol matching are subject to the failures mentioned
in section 3.9.2: synonyms prevent detection of relationships,
ambiguities induce spurious connections.

Furthermore, if qualified names (multi-field keys) are used,
there is potentially another kind of spurious connection. A match
may be made with any other relation containing those two
columns, even when those two columns are not serving as the
qualified names of single entities. This was illustrated in section
8.8.3.

10.5.3 Orderings

An ordering has the appearance of a relationship (X is less
than Y), but it would be cumbersome to model it as a binary
relationship (pairing each item with every larger item).

187

Some orderings are obtained by sorting on data maintained
about the entity (e.g., order employees alphabetically by name,
or by employee number, or by salary, etc.). Other orderings,
however, are not based on such data; they simply reflect a
sequence based on some criterion that is not provided to the
system in any “sorting” procedure. Examples of these include the
lines in a text file, the statements in a program, the order of
succession to an office (e.g., the presidency), a chronological
sequence of measurements, the starting positions in a race,
batting orders, and so on.

There are two ways to model such sequences, and it is not
clear which is appropriate for a conceptual model. The first way
is to specify a field or attribute whose value represents the
ordinal position of an entity in this sequence or ranking. (Since
the ranking may intermix several entity types, this attribute
would have to be defined as common to all of them.) The
management of this attribute can be presented to external users
in several ways. The least desirable is to make the user fully
responsible for its maintenance: on inserting, deleting, or moving
an entity relative to the ranking, the user must update the
sequence fields in all the subsequent entities in the ordered set.
Alternatively, the system could understand the semantics of a
sequence field: when the user places or moves one entity behind
another, the system recomputes the sequence fields as needed.
This facility is commonly provided by text processing systems.

The alternative is to represent order as an explicit
relationship, e.g., “precedes”. In the viewer’s mind, the entities
could be perceived as being physically adjacent, or connected by
chains of pointers. However, the user could still be presented
with facilities to either “insert X after Y” or “insert X as fifth”
(perhaps implemented by a procedure that counts its way down a
chain). An external representation could still contain a sequence
field, perhaps generated by a counting process when the record is
materialized.

The two approaches are functionally equivalent. Either can
be made “primitive” in the conceptual model, with the other
being derived or computed. Either can be presented to external
users in the two forms “insert X after Y” and “insert X as fifth”.

188

Either can be implemented internally by physical adjacency,
sequence fields, pointer chains, indexes, or other techniques.
Each implementation has its own performance tradeoffs, and
perhaps different locking implications. If two users are each
working with half of an ordered set, can one user insert or delete
an entity without having to wait for sequence field updates to be
propagated into the other half? Sometimes that interference is
undesirable, in cases where only the relative order and not the
actual sequence number is significant.

10.6 Existence Lists

This topic really concerns the modeling of entities,

particularly with respect to establishing their existence. But we
mention it here to contrast it with the most common practice: the
existence of entities is typically not modeled independently, but
is implied by their participation in various relationships.

For example, we often speak of employee records as though
there was just one set of them, with exactly one record for each
employee. But there is nothing in any of the record based models
to preclude defining several sets of employee records, each
containing different kinds of information. One might contain
payroll information, another might have health information, and
so on. Irreducible relations move us in that direction.

In a sense, we also have other kinds of records about
employees, namely the intersection records that a normalized
system forces us to maintain for many-to-many relationships
(e.g., employment history). True, this is not a simple employee
list, since there may generally be several such records per
employee (e.g., one for each department in which he has
worked). A given employee is likely to be involved in several
such record types (one for each type of multi-valued fact about
him, e.g., departments, children, skills, etc.), as well as several
instances within each type.

Ironically, it is conceivable that those are the only kinds of
records we have about him. If it happened that every single fact
about an employee could be multi-valued (e.g., several names,
several departments, several salaries, etc.), then there would be

189

no such thing as “an” employee record. All we could show for
the employee is a collection of various types of intersection
records.

Of all the kinds of records in which employees might occur,
which type is to be considered the definitive list of employees?
What is going to serve as the defining list for an existence test
(section 2.4)?

Conceptually, at least, it would help to always have a notion
of an existence list, whose purpose is to exhibit the currently
known set of members of that type. Put another way, one ought
to be able to assert the existence of something separately from
providing assorted facts about it.

The relational model appears (depending on which papers
you read) to have several partial approximations to existence
lists. Each column of a relation may have, in addition to a
column name, the name of some associated domain ⎯ but that
domain is not a manipulatable structure in which one can add or
delete members as with other relations. It is possible to specify
constraints of the form “keys occurring in this relation must also
occur in that relation” (e.g., [Smith 77a]) ⎯ but there is no
discipline saying that you must nominate the same “that” relation
in two constraints involving employees (hence there may still be
no single relation defining the domain of employees). And,
finally, defenders of the relational model point out that one could
introduce unary relations (relations with only one column, e.g.,
employee number) to serve as domain sets, and consistently refer
to such relations in constraints ⎯ one could, but the relational
model doesn’t require it, and I don’t think anyone has ever done
it.

[Furtado] notes: “An immediate consequence of adopting a
graph-theoretical model is that, being assimilated to nodes, the
domain elements exist by themselves. This is at variance with the
original relational model.... where the existence of a domain
element is conditional to its presence in some relation tuple”.

A final concern: domains are too often defined in terms of
symbols (character strings) rather than entities. [McLeod], for
example, considers a relational database to consist of a collection
of normalized relations and a collection of domains, but defines

190

a domain to be “a set of atomic data values (objects). In
particular, a domain is a subset of one of the two ‘natural’
domains: real number and character string.” This is not at all an
existence list. It is a syntax test for the acceptability of symbols;
it is in no way a list of entities that permits individuals to be
added or removed.

191

11 Elementary Concepts: Another Model?

hus far we have been largely critical, and negative. We
have identified problems without really suggesting
solutions.

Can we identify an appropriate set of elementary
concepts that will on the one hand serve as a general base for
modeling information (in our limited use of that term), and on
the other hand be an appropriate base for computerized
implementations? Let us try.

What follows here is a sketch of work in progress, some
basic ideas about the “right” set of constructs for such a model.
Much work remains to be done ⎯ including an attempt to define
more precisely the criteria by which the model is “right” in the
first place.

I will begin (shortly) with some partially worked out ideas
for a specific model, so that we know at the outset what
conclusions I wish to justify. Then some motivations and
comments will follow.

The model is not intended for modeling reality as such. It is
rather an idealized system for processing information, which
hopefully has some very useful characteristics for modeling
reality. It is highly abstract, and can be implemented (realized) in
real systems in many ways ⎯ just as the abstract concept of
“ten” can be represented many ways in machines. Also, in its
pure form, the model has certain properties that prevent it from
ever being implemented perfectly ⎯ just as the infinite set of
real numbers can never all be represented in a finite computer.
For example, some things in the model are infinite, and some
things exist without ever being created. Such things can only be
approximated in real systems.

T

192

11.1 System Organization

As introduced in chapter 0, the model has to be understood
as functioning in the context of a system organization, consisting
of a repository, an interface, and a processor. Mostly, we will talk
about the (apparent) contents of the repository. Very little will be
said about the interface.

The processor is a large piece of unfinished business. If done
properly, it can be the basis for canonical definitions of computer
operations on data. It is the dynamic component of information
definition, doing for data manipulation what the repository
model does for static data structures.

It seems obvious that natural operations of the processor
include creation, destruction, connection, and disconnection of
objects. Executable objects (to be introduced below) will also
have to be executed by the processor. Some aspects of the
processor can be tailored ⎯ their precise definition is not
intrinsic to the model. (But it will govern the kinds of things that
may occur in the executables.) E.g.:

• Kinds and complexities of queries and expressions.
• Conventions followed for name resolution.

11.2 Primary Model Elements

11.2.1 Objects

The descriptions of most models begin by making
distinctions, between such constructs as entities, relationships,
attributes, names, types, collections, etc. These are implicitly
taken to be mutually exclusive concepts, more or less.

We start instead from a unifying premise: all of these
constructs are in fact entities. Each of these phenomena, and
each of their instances, is a distinct integral concept, capable of
being represented as a unit item in a model.

193

Everything in the repository is an “object”. The term is used
interchangeably with “surrogate”, “representative”, and
sometimes “thing”.

There are four kinds of objects: simple ones, and the three
kinds described in subsequent sections ⎯ symbols, relationships,
and executables. Simple objects don’t do anything else except
represent entities; they occur very frequently.

There are very few general properties I can think of which
apply to all objects. The main ones that come to mind now are
these:

1. Objects can be related to each other.
2. Their existence can be detected by the processor.

The four kinds of objects are primitive to the processor in the

sense that the processor can determine the kind of object directly,
without chasing relationships to find out the “type”.

The four kinds are mutually exclusive, e.g., a relationship is
not a symbol. But let me re-emphasize, because it’s important:
these four kinds are all objects. Any kind of object can be related
to any other kind of object.

11.2.2 Symbols

Some objects in the repository are “symbols”, for which I
sometimes also use the term “string” (in the sense of a character
string). Symbols are the only objects that can pass across the
interface. The communication that takes place between you and
the processor across the interface consists entirely of a stream of
symbols. Some of those symbols come to rest in the repository;
others are interpreted or generated by the processor. The symbols
in the repository are related to other objects, serving as names,
descriptions, or representations for those objects (more precisely,
for the entities represented by those objects).

Remember, this is an abstract model. A real implementation
doesn’t have to have this complex of two objects and a naming
relationship for each and every entity; it should just behave as
though it did.

194

A symbol object also needs to have a name itself, which can
be passed through the interface. One often needs to reference it,
as in the request to relate a certain entity to a certain name.
Across the interface, a quotation mark convention can indicate
that a symbol is naming itself. “Relate Harry to X” connects a
thing named Harry to a thing named X. “Relate Harry to ‘X’“
connects a thing named Harry to the symbol X.

11.2.3 Relationships

Two aspects of relationships need to be modeled: the relation
type, and the occurrences of the relationship.

I don’t have the type object well designed yet, but I hope it
can be fabricated from ordinary objects. However, it might
require the introduction of some additional primitive objects. The
following appear to be the necessary characteristics of a relation
type object:

• It is connected by naming relationships to the name(s) of

the relationship.
• It is connected (by relationships?) to affiliated role

objects, which represent the roles defined within the
relationship. (Such “roles” are sometimes referred to as
“selectors”.) An n-ary relationship has n affiliated role
objects.

• The degree of the relationship is recorded in an ordinary
way, e.g., a “has degree” relationship between the
relationship type object and an ordinary quantity object.

• The role objects and/or the relationship type object are
connected (by relationships?) to executable objects,
which represent the domain constraints and other
validation rules defined for the relationship.

195

A relationship type object may be drawn as:

RELATIONSHIP

Owns

ROLE

Owner

NUMBER

2

ROLE

Property

has role

has degree

has role

This diagram uses conventions that will be defined in section
11.3.3: the type and name relationships are abbreviated by
writing types and names inside the boxes. Also, constraints have
been omitted from this diagram.

The unfinished state of these objects doesn’t hurt the model.
Their purpose and function is well understood. If they all have to
be made primitive, nothing is really lost. It’s just that there’s a
challenge in minimizing the number of primitives, and in
defining the model elegantly.

Relationship occurrences, on the other hand, are well defined
in this model. For brevity, I will sometimes use the term link for
a relationship occurrence.

These link objects glue together all the objects in the
repository, providing the basis of virtually all the information in
the repository. The structure of a link is somewhat elaborate,
serving the following functions:

• It has a connection to the relationship type of which this

link is an occurrence.
• It has connections to the n objects being related, where n

is the degree of the relationship.

196

• It connects each of these objects to a role object, to
establish in which role each related object is occurring.
(One could think of the roles and objects being ordered,
with the correspondence being by position. But we don’t
make position numbers an explicit part of the model⎯so
long as some correspondence mechanism exists.)

These connections are provided primitively by the link

object. The connections are not themselves modeled as
relationships, thus preventing an epidemic of infinite recursion.

A link object may be drawn as:

RELATIONSHIP

Owns
(a link object)

ROLE

Owner

PERSON

Harry

ROLE

Property

DOG

Rover

A link requires the continued existence of the objects it

connects. It should be specifiable (in the creation of a relation
type) what should happen on an attempt to delete an object
connected to one of its links. Either the deletion is blocked, or
the link goes too.

11.2.4 Executable Objects

This is another piece of largely unfinished business.
These are objects in the repository that can direct operations

of the processor. They are introduced primarily to represent
constraints to be enforced by the processor. They can also

197

represent implications or derivations ⎯ the generation of
auxiliary objects or relationships that are consequences of other
information. And they probably have other uses. Maybe they can
be the embodiment of certain kinds of existence tests. And
equality tests.

I don’t really know how they will occur in the repository. To
be pure, the object should be distinct from the “symbol” (long
character string) which is its description in some language (its
source text). In theory, at least, a variety of text strings could
specify the same action.

There also has to be some mechanism for its connection into
the web of information. It sometimes makes sense to link it to
relationship type objects, since an executable is often triggered
by the assertion of a relationship of a specified type. But
sometimes it is triggered by a specified relationship to a
particular object (a constraint on which things may be related to
X by R). And there certainly has to be some mechanism that
causes the processor to encounter the executable object at the
right time, recognize it as such, and execute it.

On the other hand, executables might be used for triggered
actions not related to specific relationship assertions, such as
scheduled data changes based on time.

Also, something has to be designed concerning actions to
take when constraints are violated. Maybe the general form of an
executable is: “when (event) if (condition) then (action) else
(action)”... or perhaps it should include a case statement.

And another part of the unknown: they will undoubtedly
involve references ⎯ how linked? ⎯ to other objects involved
in the constraints, e.g., type objects, or limit values.

11.3 Secondary Elements: A Vernacular

Those primary objects will be sufficient, I contend, for our

modeling purposes (after we finish defining the objects, of
course). But we can’t escape the fact that such things as type,
attribute, and set are also useful and common notions. I need
them myself ⎯ I couldn’t avoid using them throughout this
book. And at the same time they remain ambiguous and

198

troublesome, being difficult to define precisely, or to distinguish
from each other and from the primary concepts.

We cope with this by allowing two levels of thought, the
rigorous and the vernacular. At the rigorous level we use only the
primary concepts of the model. This is adequate for all purposes
except comprehensibility: the sentences get awfully convoluted,
and the diagrams are frightening.

In the vernacular mode, we use secondary concepts that can
be defined in terms of the primaries (they may not have been so
defined, but they can be). Thus we may informally speak of
“objects of type X”, understanding that we mean objects related
by a “has type” relation to an object named X, where X in turn is
an object whose type is “type” (i.e., X is a type). And even that’s
not the full refinement: “an object named X” is vernacular for
“object related by a ‘has name’ relation to symbol ‘X’“ and
furthermore, the phrase “related by a ‘has name’ relation” refines
to mean an instance of a relation that is itself related by the ‘has
name’ relation to the symbol ‘has name’.... and so on. The
recursion can be stopped fairly soon ⎯ but it takes a frightening
diagram to demonstrate it.

To illustrate, consider the phrase “red is a color”, for which
we have used the notation

We might say at a vernacular level that “red has-type color”:

COLOR

red

red

has type

COLOR

199

But this assumes concepts of types and names that aren’t in
the primary model. We might go through several stages of
refinement to reduce this to purely primary concepts, starting
with “an object whose name is ‘red’ and whose type is COLOR”:

has name red

has type

COLOR

A box like red denotes a symbol.

This in turn refines to “an object whose name is ‘red’ and

whose type is an object whose name is ‘COLOR’ and whose type
is TYPE”:

has name red

has type

has name COLOR

has type

TYPE

200

And then to “an object whose name is ‘red’ and whose type
is an object whose name is ‘COLOR’ and whose type is an
object named ‘TYPE’”:

has name red

has type

has name COLOR

has type

has name TYPE

We stop here to escape infinite regress, since the type of
TYPE is TYPE:

201

has name red

has type

has name COLOR

has type

has name TYPE

has type

Several purposes are served by having both the rigorous and
the vernacular levels. A broad range of important concepts is
accounted for, without requiring their inclusion in the base
model. The base model can be kept elegant, with the primitive
concepts being few and well defined.

The base model provides a medium for very precise
definition of the other concepts. Thus, when many of the
dilemmas described in this book arise, they can often be resolved
by referring to (or agreeing on) precise definitions in terms of
primitives.

At the same time, by keeping them out of the base model, we
don’t need permanent or universal definitions, thus avoiding
many tedious debates. We can agree on local definitions in the
context of a particular conversation. And, in fact, different
implementations of the model might employ different definitions
of the secondary constructs.

Thus, we could view our product here as a “model
generator”, capable of producing various modeling systems

202

distinguished by their differing definitions of secondary
constructs.

Also, we can avoid many of the difficulties concerning the
distinction between concepts. They can appear distinct in the
vernacular, while having similar underlying definitions. Thus, for
example, type and attribute can appear to be distinct in the
vernacular, but both be defined in terms of relationships.
Consider the notion of being an employee, with the concept
being represented by a single object. This object could be both a
type and a status. An entity could have one relationship to this
object, which could be interpreted by some as an attribute and by
others as a type. (It may require a complex synonym for the
relationship, with one person thinking it was named “has type”
while the other thought it was named “has status”. On the other
hand, we avoid that if the relation is simply named “has”.)

Thus two apparently distinct phenomena are given an
interpretation as two views of the same phenomenon. And a
mechanism is provided for treating them interchangeably: what
is treated in one application as a type can be treated by another
as an attribute.

I will not formally define any secondary elements.

11.3.1 Type

Here’s a way to introduce types, and to tailor them to suit
your taste.

Let there be a distinguished object in the repository that your
processor recognizes as representing the concept of “type”. (We
could let this object be related to the symbol “TYPE” by a
naming relationship.)

Let there be a relationship named “has-type”, one instance of
which links TYPE with itself (i.e., TYPE is itself a TYPE; it is
an object whose type is TYPE). Relate has-type to an executable,
which will only permit X has-type Y if Y has-type TYPE (e.g., X
can only have type EMPLOYEE if EMPLOYEE is a type).

The type Y can be introduced by asserting Y has-type TYPE.
Things can now be of type Y by having a has-type relationship to
Y.

203

The use of executables in this context needs to be worked
out. For the constraints on objects of type Y, the executable
would have to be triggered whenever a has-type relationship to Y
is asserted. The executable would include constraints on naming
conventions, and on allowable overlaps with other types.

If desired, a global constraint to the effect that no types may
overlap could be attached to the TYPE object itself. (“For any X
and Y and Z, X has-type Y and X has-type Z may only occur
together if Y equals Z”.) But I don’t know how to effectively
introduce the triggering of another global constraint that you
might want: every object must have at least one type (“for each
X there must be a Y such that X has-type Y”). Maybe it has to be
triggered by the create operation of the processor.

11.3.2 Naming

Naming is really a very complex topic, with a large variety
of structures and algorithms actually employed in real situations.
The topic could include anything ranging from simple labels to
complex (and perhaps interactive) stratagems for isolating a
single object (name qualification, catalog cascades, intersecting
or converging descriptions, and so on).

Our approach is to not prescribe any one simplified
technique, but rather to provide an environment in which any
desired structure and algorithm can be expressed. This is
generally achieved by permitting any configuration of
relationships among things and symbols, which may then be
exploited by manipulative functions in any desired manner.

The simplest notion for naming is that there are two objects
in the system, a nameless element that is the actual
representative (surrogate) for something in the real world, and
another object that is a symbol. A naming relationship connects
these two, as in [Hall 76]. The surrogate may be so connected to
several symbols, serving as synonyms or aliases, or even as
descriptions. An implementation need not supply two such
distinguishable objects; this device merely serves to describe the
semantics of the model.

204

Such a naming convention, or any more complex ones
desired, can be incorporated into the processor for a given
system, making use of ordinary model objects (including
executables).

The model does not require a thing to have any unique name.
In fact, it does not require a thing to have any name at all.
(“Create object owned by Harry, weighing 12 pounds.” “What
are the weights of things owned by Harry?” “12 pounds.” “What
does Harry own?” “One nameless thing weighing 12 pounds.”)
And there are babies. Many of them don’t have names for a few
hours, or even days, after birth. But data still gets recorded about
them, and they certainly do get talked about.

The requirement to have a name, or a unique name, can be
imposed in various implementations, or when used in
conjunction with particular data processing systems. But they are
not intrinsic requirements of the model.

11.3.3 Vernacular Pictures

It is fairly natural to use abbreviated diagrams corresponding
to these vernacular concepts. We have been using some already.

A picture of this form has a fairly natural
interpretation. It depicts an object linked by a naming
relationship to the symbol “red”, and linked by a

typing relationship to a type named “COLOR”. That is, we have
the type in the top of the box and the name in the bottom. Such a
diagram is appropriate if:

• There is exactly one naming relationship that is

understood to apply, and everyone knows which one (or
nobody cares).

• The object has exactly one name.
• Ditto for types.

Sometimes even the type can be omitted, if we are willing to
assume that everyone understands which one is implied.

C O L O R

r e d

red

205

Similar conventions hold for relationships. The link we
showed in section 11.2.3 is often abbreviated as:

Harry owns Rover

Or even as
owns

Harry Rover

Again, such conventions are only applicable when the full
structure of the link is clearly inferable, e.g., the roles being
played by each of the participants in the relationship.

11.3.4 Sets

Derived relationships (section 11.8.3) can be used to
introduce a vernacular notion of sets. The derived relationships
would be used for:

• General definitions for all sets re propagations of subset

and membership relationships.
• For maintenance of membership relationship to a

particular set, defined in terms of things having certain
relationship to certain object.

11.4 The Name of the Model

Perhaps this model ought to have a name, for handy

reference. Any model worth its salt ought to have a catchy
acronym.

Sometimes I call it STAR, standing for “Strings (or
Symbols), Things, And Relationships”.

But it could also be ROSE: “Relationships, Objects,
Symbols, and Executables”.

Maybe I should have a contest. Winner gets to finish
defining the model. (Losers get to use it?)

11.5 About Entities

206

11.5.1 Existence

We have to be careful about the sense in which we mean that
an object (representative) “exists” in the repository. The
existence tests have to be specified (using a vernacular based on
type), and this conditions what we believe about existence.

The kind of existence test I understand best, and which I
tend to assume most of the time, is a list-test with objects
distinguished from symbols. That is, the “list” is a set of objects,
each of which may have any number of symbols linked to it by
any complex pattern of naming relationships. Existence is
established when one of these symbol paths leads to an object in
this set (and equality is established when two of these symbol
paths leads to the same object).

Modeling something abstractly as having representatives
does not necessarily imply that physical storage space will be
occupied by such representatives. Nor does it imply that such
representatives are explicitly created or destroyed.

The interaction of overlapping types must be considered. A
given entity might be subject to multiple existence or equality
tests. Are they consistent?

11.5.2 The Butler Did It

I haven’t solved the problem of collapsing two entities into
one (section 1.4.), and I don’t know how. A brute force approach
would be to discard one of the surrogates, and replace all
references (linkages) to it by references to the other one. This
could lead to enormous validation problems.

A mischievous idea: we could introduce a relationship
meaning “is the same entity as”. At the end of our mystery, we
would simply assert such a relationship between the butler and
the murderer. What in the world would that mean to our model?

Looking at the model “physically”, we can plainly see that
there are two entities connected by a relationship. But if we take
cognizance of the semantics of the relationship, we must only
perceive one entity (and no relationships?). Should a counting

207

function have to examine the semantics of such relationships?
(“How many entities are in the room?” “How many relationships
exist between the murderer and the butler?”)

11.6 About Symbols

The initial concept is that of finite sequences of characters

from some alphabet (including numbers and special characters).
We don’t really care which alphabet, so long as we can construct
all the names, representations, descriptions, etc., that we need
from it. Even with this looseness, we get into some funny
considerations. Does the character size, case, font, color, etc.
make a difference? How shall we decide when two symbols are
the same or not? What about strings that run from right to left, or
vertically? What about hieroglyphics, pictographs, ideograms,
graphic images?

I give up. The essential idea is this. We postulate some
interface in front of the model across which all communications
with the model take place (typically involving some form of
computer related input/output devices). We postulate the
existence of some set of symbols that can pass across this
interface, without really defining what we mean, except to say
that:

• All communication across the interface is in terms of

such symbols.
• There is some definite algorithm for determining when

two symbols are the same or different (we don’t care
what the algorithm is).

11.7 The Symbol Stream and the Processor

It’s becoming increasingly evident to me that we really need

to think of the symbol stream that passes across the interface as
being addressed to the processor. Symbols get into the repository
indirectly, under control of the processor.

One could take a simple view to the effect that symbols go
directly to the repository, where they serve to represent the thing

208

named by the symbol. One could say to the computer “Create
John”, causing the symbol “John” to enter the repository, to
serve as the representative of the person named John. In
subsequent communications, the symbol “John” will occur to
indicate reference to that person. This won’t do, in our model,
because of our insistence on separating surrogates for entities
from the symbols that name the entities.

But we can still imagine the computer having a
straightforward interpretation of “Create John”: it will first create
the symbol “John” if it doesn’t already exist, then create a new
surrogate, and then link the new surrogate to the symbol “John”
under a “name” relationship. This is still not too far removed
from thinking that the symbol “John” goes directly into the
repository, and that references to that person will contain the
symbol “John” (or some other defined synonym).

But now consider this series of instructions: “Create a
surrogate for something. It has a height of six feet. It is a person.
Etc.” In the second and third instructions, what is the symbol that
refers to the subject of the information? It is the pronoun “it”. To
what extent is that a symbol, of the kind that one might find in
the repository, connected to something by a naming relationship?
Or is that pronoun really better described as an instruction to the
processor, to be interpreted as another reference to the most
recently referenced entity? (Which implies that the processor is
maintaining a history of the dialog, to recall which was most
recently referenced.)

More generally, one might refer to an entity by using a
complex descriptive phrase causing the traversal of many entities
and relationships, or the application of testing procedures, in
order to arrive at the entity in question. Something like this
occurs in many query systems, and is implicit in most name
qualification conventions.

Thus, the concept of a symbol in a communication
“representing” something becomes quite nebulous. It could be a
simple symbol directly linked to the surrogate in question, or it
could be an instruction guiding the processor to the surrogate.
This spectrum of processing possibilities underlies our difficulty

209

in defining the difference between naming and description
(chapter 3).

In any case, it is often held that there has to be some sort of
explicit symbol in the communication that is associatable with
the entity in question, even if the symbol is only a placeholder,
like the pronouns “it” or “something”. But let me endow the
processor with intelligence enough to play a familiar game
(which assuredly can be programmed). I will say to this
processor “Let’s play twenty questions.” That instruction is
sufficient to cause the processor to create a new surrogate with
absolutely no information attached, to which the processor will
later expect to attach information. The information can be
attached because the processor will understand the pronoun “it”
to refer to that surrogate. Eventually the processor will try to
match the surrogate and its attached information with some
existing surrogate. But look at the initial instruction: “Let’s play
twenty questions.” It caused a surrogate to be created. Where in
that sentence is any sort of symbol that could be interpreted as a
symbol (placeholder or otherwise) for that surrogate?

11.8 About Relationships

11.8.1 Entities

Once more, for emphasis: they are entities, and a relationship
can link another relationship to something else.

Too many of the graphical models make entities and
relationships mutually exclusive by forcing the entities to be
points (nodes) and the relationships to be lines (edges). Then
you’re not permitted to draw a line between two lines, or from a
line to a point. What we have done, if you must picture it, is to
give each line a bulge in its middle, so that it can itself function
as a node.

11.8.2 Existence

210

Like entities, relationships can also have several modes of
existence. Thus we have to be careful also about the sense in
which we imagine links to exist. I really can’t imagine an
implementation in which every abstractly modeled link actually
corresponds to, say, a pointer in storage. So, it may be necessary
to introduce specifications of the existence modes of
relationships.

Some of them may be functional (computed, procedural) ⎯
which could lead to the use of executables to model
relationships. Orderings, trig functions, etc. seem to fit this mold.
For such relationships, certain semantic characteristics ought to
be made explicit, such as:

• Assertability, modifiability, deletability of occurrences

(probably can’t be done).
• Ability of occurrences to participate in other

relationships (probably limited to other computed ones).
• Bidirectionality (inverse function might not be

provided).
• Finiteness (listability, satisfiability of queries: list all

occurrences of “less than”).

Also, there is undoubtedly some interaction between the

existence modes of a relationship and the objects it relates. It’s
hard to imagine an explicit link to an object whose existence is
procedurally verified.

11.8.3 Derived (Implied) Relationships

The model needs a general mechanism for the specification
and execution of derived relationships (cf. section 4.6). They are
likely to take the form of executable objects, linked to:

• The relationship (type) whose derivation is being

defined.
• The relationships and objects (types) from which it is

derived.

211

11.8.4 Specification

The following things ought to be specifiable when a
relationship type is created in the model, and a configuration is
needed for representing these using model objects:

• Relationship name(s).
• Degree.
• Role names.
• Domain constraints.
• Other constraints.
• Existence mode, executable generators, etc.
• Cascading deletion rules.

11.8.5 Symmetric Relationships

Some variations might be appropriate to support symmetric
relationships. The roles need not all be distinct, and hence a
relationship type of degree n might have fewer than n affiliated
role objects. The significance of n is that each link object must
connect n objects; several of these may be connected to the same
role object.

11.9 About Attributes

As promised in chapter 5, we don’t distinguish these from

relationships. If you want to introduce a definition, I suggest that
the most promising route is as a special case of relationships,
framed in terms of the existence tests for the types of entities
involved.

11.10 Descriptions: Data About Data

Definitions, constraints, etc. are modeled right in the same

repository, using model constructs.

212

Such definitions are often considered to be expressed in
terms of “types”, e.g., X is the existence test for objects of type
Y. We assume instead that such definitions are couched in a more
general form, in terms of objects and relationships. E.g., X is the
existence test for objects having relationship T to object Y.

If Y is interpreted as a type, then we can see that types and
instances are necessarily modeled as being in the same
repository, since they are connected by relationships (T, in this
case).

11.11 Implementations

It is very important to keep in mind that the separation

between things and symbols is a conceptual property of the
model, without any direct implications for implementations. A
naming relationship does not have to exist as a collection of
distinct physical objects, each of which links a distinct thing
object with another distinct symbol object. It can be
implemented in any number of efficient and compact ways. The
separation is only a device for explaining the semantic properties
of the model.

Similarly, a type relationship does not have to be
implemented with an enormous number of distinct relationship
objects. Most implementations are likely to encode the type (or
types) of a thing directly into its representative.

The same applies to other aspects of the model as well. It is
not expected that a distinct physical object will exist for each and
every entity. That would be very impractical for, e.g., numeric
quantities. However, the model does provide the capability to
express the corresponding semantic implications, e.g., whether
or not entities of a given type need to be explicitly created before
they are referenced.

To be perfect, use of the model should involve absolutely no
assumptions about the existence of any kinds of entities,
symbols, or relationships. They should all be asserted explicitly.
But there is a large class of things we take for granted, and which
are implicitly assumed to be provided in an expected realization
in a computer. We take advantage of these being “built into” the

213

semantics of a computer; in any real use of the model, nobody
wants to be bothered specifying these explicitly.

The things we get “for free” include:

• The existence of a set of symbols, and an alphabet from

which they are constructed.
• The existence of the concept of numbers.
• Conventions establishing which symbols are naming

which numbers under various conditions.
• The existence of ordering relationships, including

collating sequences for non-numeric symbols.
• The existence of certain equality tests.
• The existence of certain synonym relationships: data

type conversions, floating point normalizations, etc.
• The existence of certain acceptance tests: data types.

While we don’t wish to be bothered specifying these, we do

not always get what we had assumed.
If there is a limitation on the set of integers that can occur in

the repository (limited by the capacity of the underlying
computer), shouldn’t that be expressed in the model?

It is possible to implement some of the primitive model
objects simply as integers, i.e., internally generated globally
unique identifiers. It works for some of the simple objects,
depending on the nature of their existence tests. It doesn’t work
for links, since a simple integer doesn’t capture the structure
needed for connecting to the other objects involved. And it is
likely to be clumsy for symbols, which in most cases should
contain the actual string of characters comprising the symbol.

Even where internal integers are usable, they aren’t
necessary. Just about any large enough collection of discrete and
linkable things will do. And even when such objects do have
string-like internal representations (such as machine addresses or
database keys), if they are not exposed across the interface they
had might as well be arbitrary objects.

Executable objects are not necessarily implemented by
discrete executable procedures. Structures in the underlying

214

system or machine may implicitly enforce certain constraints, in
the way that hierarchical data structures enforce one-to-many
relationships.

11.12 Comparison With Other Models

This is not really a new model, but a “better” packaging of

existing ideas. Depending on which details you suppress, there
are many models that are “just like” this one. The works to
which I think the resemblance is especially strong include
[Bracchi], [Hall 76], [Senko 76], [Falkenberg].

The following are some brief characterizations of the model.
Which ones interest you depends on which other models you
favor, or consider important to be compared with.

• The model is much like an irreducible n-ary model.
• The model is much like a binary relational model, in the

sense of [Bracchi].
• It differs from any form of relational model in that a

relationship occurrence is an aggregation of surrogates,
not symbols.

• The model distinguishes between the objects
(surrogates) that represent entities and the symbols that
name entities.

• It supports many-to-many relationships directly.
• Its primary constructs are objects, relationships,

symbols, and executable objects.
• It does not take type, attribute, set, or naming rules to be

primary constructs.
• To the extent that it does have a type phenomenon, it

allows types to overlap (an object can be of multiple
types).

• The semantics to be specified for surrogates includes a
description of the existence tests and the equality tests.

• Descriptions are not segregated from data. They reside in
the same repository, and are interconnected.

215

• The model is described in the context of a system
organization, consisting of a repository, an interface, and
a processor.

216

217

12 Philosophy

12.1 Reality and Tools

have tried to describe information as it “really is” (at least, as
it appears to me), and have kept tripping over fuzzy and
overlapping concepts. This is precisely why system

designers and engineers and mechanics often lose patience with
academic approaches. They recognize, often implicitly, that the
complexity and amorphousness of reality is unmanageable.
There is an important difference between truth and utility. We
want things that are useful ⎯ at least in this business; otherwise
we’d be philosophers and artists.

Perhaps it is inevitable that tools and theories never quite
match. There are some opposite qualities inherent in them.

Theories tend to distinguish phenomena. A theory tends to be
analytical, carefully identifying all the distinct elements and
functions involved. Unifying explanations are abstracted,
relationships and interactions are described, but the distinctness
of the elements tends to be preserved.

Good tools, on the other hand, intermingle various
phenomena. They get a job done (even better, they can do a
variety of jobs). Their operation tends to intermix fragments of
various theoretical phenomena; they embody a multitude of
elementary functions simultaneously. That’s what it usually takes
to get a real job done. The end result is useful, and necessary,
and profitable.

Theories tend toward completeness. A theory is defective if
it does not account for all aspects of a phenomenon or function.

Tools tend to be incomplete in this respect. They incorporate
those elements of a function that are useful and profitable; why
bother with the rest? The justification for a tool is economic: the
cost of its production and maintenance vs. the value of its
problem solving functions. This has nothing to do with
completeness. (In 1975, a government official asked to have his
job abolished, because nobody actually needed the services of

I

218

his office. His job did have a well defined function, in theory.
“Completeness” would have dictated that his job be retained.)

Useful tools have well defined parts, and predictable
behavior. They lend themselves to solving problems we consider
important, by any means we can contrive. We often solve a
problem using a tool that wasn’t designed for it. Tools are
available to be used, don’t cost too much, don’t work too slowly,
don’t break too often, don’t need too much maintenance, don’t
need too much training in their use, don’t become obsolete too
fast or too often, are profitable to the toolmaker, and preferably
come with some guarantee, from a reliable toolmaker. Tools
don’t share many of the characteristics of theories. Completeness
and generality only matter to the extent that a few tools can
economically solve many of the problems we care about.

Thus the truth of things may be this: useful things get done
by tools that are an amalgam of fragments of theories. Those are
the kinds of tools whose production and maintenance expense
can be justified. Theories are helpful to gain understanding,
which may lead to the better design of better tools. This
understanding is not essential; an un-analytic instinct for
building good tools is just as useful, and often gets results faster.

It may be a mistake to require a tool to fit the mold of any
theory. If this be so, then we’d better be aware of when we are
discussing theory and when we are discussing tools.

Data models are tools. They do not contain in themselves the
“true” structure of information. What really goes on when we
present a data model, e.g., hierarchies, to a user? Does he say
“Aha! Of course my information is hierarchically structured; I
see how the model fits my data”? Of course not. He has to learn
how to use it. We generally presume that this learning is required
only because of the complexity of the tool. Difficulties are
initially perceived as a failure to fully understand the theory;
there is an expectation that perseverance will lead to a marvelous
insight into how the theory fits the problem. In fact, much of his
“learning” is really a struggle to contrive some way of fitting his
problem to the tool: changing the way he thinks about his
information, experimenting with different ways of representing
it, and perhaps even abandoning some parts of his intended

219

application because the tool won’t handle it. Much of this
“learning” process is really a conditioning of his perceptions, so
that he learns to accept as fact those assumptions needed to make
the theory work, and to ignore or reject as trivial those cases
where the theory fails.

Tools are generally orthogonal to the problems they solve, in
that a given tool can be applied to a variety of problems, and a
given problem can be solved in different ways with different
tools. Versatility is in fact a very desirable property in a tool. It is
useful then also to understand separately the characteristics of a
tool and the nature of the problems to which it can be applied.

12.2 Points of View

A conceptual model, by its very nature, needs to be durable

⎯ at least in form, if not content. Its content should be adjusted
to reflect changes in the enterprise and its information needs ⎯
only. The form of the conceptual model ⎯ the constructs and
terms in which it is expressed ⎯ should be as impervious as
possible to changes in the supporting computer technology. We
can postulate that the man-machine interface will continue to
evolve toward man; data processing technology will move
toward handling information in ways that are natural to the
people who use it. It follows then that a durable conceptual
model should be based on constructs as close as possible to the
human way of perceiving information.

There’s a catch right there: the implicit assumption that there
is just one “technology” by which all people perceive
information, and hence which is most natural and easy for
everybody to use. There probably isn’t. Human brains
undoubtedly function in a variety of ways. We know that some
people do their thinking primarily in terms of visual images;
others hear ideas being discussed in their heads; still others may
have a different mode of intuiting concepts, neither visual nor
aural. Analogously, some people may structure information in
their heads in tabular form, others work best with analytic
subdivisions leading to hierarchies, and others naturally follow
paths in a network of relationships.

220

This may well be the root of the debates over which data
model is best, most natural, easiest to learn and use, most
machine independent, etc. The camps are probably divided up
according to the way their brains function ⎯ each camp
advocating the model that best approximates their own brain
technology.

12.3 A View of Reality

“I do not know where we are going, but I do know this
⎯ that wherever it is, we shall lose our way.” (Sagatsa)
“If you’re confused, it just proves you’ve been paying
attention.” (G. Kent)

This book projects a philosophy that life and reality are at

bottom amorphous, disordered, contradictory, inconsistent, non-
rational, and non-objective. Science and much of western
philosophy have in the past presented us with the illusion that
things are otherwise. Rational views of the universe are idealized
models that only approximate reality. The approximations are
useful. The models are successful often enough in predicting the
behavior of things that they provide a useful foundation for
science and technology. But they are ultimately only
approximations of reality, and non-unique at that.

This bothers many of us. We don’t want to confront the
unreality of reality. It frightens, like the shifting ground in an
earthquake. We are abruptly left without reference points,
without foundations, with nothing to stand on but our
imaginations, our ethereal self-awareness.

So we shrug it off, shake it away as nonsense, philosophy,
fantasy. What good is it? Maybe if we shut our eyes the notion
will go away.

What do we know about physical entities, about ourselves?
Lewis Thomas tells us that a human being is not exactly a

single discrete living thing, but more a symbiotic interaction of
hordes of discrete living things inhabiting and motivating our
cells. We are each an enormously divisible social structure
[Thomas].

221

Sociobiologists are telling us that the human being is not the
unit of evolution and survival. It is our genes that are motivated
to survive and perpetuate themselves. Individual people are
merely vehicles whose survival serves that higher purpose ⎯
sometimes! [Time Magazine, Aug. 1, 1977.]

Our precious self image is being challenged from another
quarter, too. Some scientists aren’t quite so sure any more that
they can clearly distinguish between the categories of “man” and
“animal”. “People” might not be a well defined category! Recent
experiments have demonstrated the capabilities of chimpanzees
and gorillas to acquire language, concepts, symbols,
abstractions⎯traits held by some to be the only significant
hallmarks of the human species. A lawyer is prepared to argue
that such animals are entitled to some of the protections accorded
individuals under the law ⎯ such animals may be “legal
persons”. An article in the New York Times Magazine of June
12, 1977 observes: “If apes have access to language, can they not
be expected to reason? And if they can reason, what distinction is
there remaining between man and beast?” “Separately, and in
some instances collectively, these animals have demonstrated the
ability to converse with humans for as long as 30 minutes, to
combine learned words in order to describe new situations or
objects, to perceive difference and sameness, to understand ‘if-
then’ concepts, to describe their moods, to lie, to select and use
words in syntactic order, to express desire, to anticipate future
events, to seek signed communication with others of their
species and, in one extraordinary sequence to force the truth
from a lying human.” “... It’s a heretical question, really. I was
brought up a good Catholic. Man is man and beast is beast. I
don’t really think that now. You can’t spend four or five years
with a chimp, watch it grow up, and not realize that all the going
on in her head is pretty much the same as that going on in mine
...”

Which brings to mind that our vision of ourselves as
uniquely intelligent creatures is also threatened from quite
another quarter ⎯ the one we’ve been dealing with all along
here. What, in some people’s view, is one of the objectives of
artificial intelligence, if not to endow machines with an

222

intelligence competitive with humans? Is science fiction really
mistaken in its visions of humanoids and robots functioning like,
or better than, human beings? How often have those visionaries
been wrong before?

In the monthly magazine published by the American
Museum of Natural History, we read: “Some futurists ... view the
current difference between human and artificial intelligence as
one of degree, not of kind, and predict that the gap between
humans and machines will be crossed about the year 2000”
[Jastrow]. Data processing people are fond of saying that the
category of employees is a subset of the category of people. How
long before we have to expand that to include animals and
robots? I wonder if that question will really sound as foolish to
someone reading this, say, twenty or fifty years from now.

What does all this do to our sense of identity, to our
egocentric view of people as entities? If we have to rebuild our
world view so radically again (as, for example, Copernicus
forced us to do once before), then how much faith can we have
in the permanence of any world view?

Our notions of reality are overwhelmingly dominated by the
accidental configurations of our physical senses. We are very
parochial in our sense of scale. Bacteria and viruses and sub-
atomic particles are not very real to most of us, nor are galaxies.
We don’t really know how to comprehend them. Our concept of
motion is bounded by the physiology of our eyes: the continental
plates don’t move, but motion pictures (sequences of still
pictures!) do. Most of us think of continents and islands as
permanent and discrete entities ⎯ rather than as accidents of the
current water level in the oceans. Are islands and mountains such
different things? Have you ever had the opportunity to observe a
reservoir get filled, or emptied?

And our sense of reality is quite conditioned by the very
narrow frequency range to which our eyes respond. Imagine if
we couldn’t see the “visible” spectrum, but could see ultra-violet,
or infra-red, or x-rays ⎯ or maybe sound waves! We might not
have any notion of opaque objects; everything might be
translucent or transparent. Things might appear to have entirely
different shapes or boundaries. We might not have such a

223

primary notion of things having sharp or fixed boundaries; the
normal mode of things might be a state of flux, like the wind or
clouds or currents in the ocean. Think of perceiving people in
terms of the thermal gradients around their bodies, rather than
gradients in the visible spectrum. We might have no concept of
day or night. Those concepts are only so “real” and
“fundamental” because we are so dependent on visible light.
Clumps of heat might look like “things” to us, just as clouds do
now. We might see sounds as physical things moving through the
air, and we might see the wind.

Or suppose that senses other than sight dominated our world
view. The universe of many animals ⎯ their sense of what
things exist, and what they are ⎯ is based on smells. To them,
the existence and nature of a thing is defined primarily by what it
smells like. What it looks like is an occasional, trivial
consideration (like the smell of things is to us). In a heavy fog,
we suddenly live in a universe of things heard, rather than things
seen.

The shark seems to have sense organs responding directly to
electrical phenomena. What image of reality could it have, which
we don’t even know how to imagine? (And what view of reality
do we have, which a blind person doesn’t even know how to
imagine? Can you even begin to imagine how it feels to have no
comprehension at all of what the verb “see” means?)

To a greater or lesser extent, we all operate with somewhat
different foundations for our perceptions of reality. Biologist
Robert Trivers comments: “The conventional view that natural
selection favors nervous systems that produce ever more
accurate images of the world must be a very naive view of
mental evolution.” [Time Magazine, Aug. 1, 1977.] Among
many of us, the differences are trivial. Between some of us they
are enormous.

Compare your view of reality with that of a mathematical
physicist, or an astronomer. (If you are one, how does it feel to
be singled out as having a peculiar view?) The world view of
such people includes as regular features such notions as
Einsteinian time and space, particles of light, light being bent by
gravity, everything accelerating away from everything else, black

224

holes, and seeing things (stars) that may have vanished
thousands or millions of years ago. How often do these crop up
in your world view?

Your brain may be obliged to confess such views are real,
but your intuition isn’t. What shall we make of it? The earth does
look flat, after all, doesn’t it? And, no matter how much
schooling we’ve had, we can’t seem to stop thinking of the sun
as rising and setting. Incidentally, do your children share your
world view of this phenomenon?

“Consider how the world appears to any man, however wise
and experienced in human life, who has never heard one word of
what science has discovered about the Cosmos. To him the earth
is flat; the sun and moon are shining objects of small size that
pop up daily above an eastern rim, move through the upper air,
and sink below a western edge; obviously they spend the night
somewhere underground. The sky is an inverted bowl made of
some blue material. The stars, tiny and rather near objects, seem
as if they might be alive, for they ‘come out’ from the sky at
evening like rabbits or rattlesnakes from their burrows, and slip
back again at dawn. ‘Solar system’ has no meaning to him, and
the concept of a ‘law of gravitation’ is quite unintelligible ⎯
nay, even nonsensical. For him bodies do not fall because of a
law of gravitation, but rather ‘because there is nothing to hold
them up’ ⎯ i.e., because he cannot imagine their doing anything
else. He cannot conceive space without an ‘up’ and ‘down’ or
even without an ‘east’ and ‘west’ in it. For him the blood does
not circulate; nor does the heart pump blood; he thinks it is a
place where love, kindness, and thoughts are kept. Cooling is not
a removal of heat but an addition of ‘cold’; leaves are not green
from the chemical substance chlorophyll in them, but from the
‘greenness’ in them. It will be impossible to reason him out of
these beliefs. He will assert them as plain, hard-headed common
sense; which means that they satisfy him because they are
completely adequate as a system of communication between him
and his fellow men. That is, they are adequate linguistically to
his social needs, and will remain so until an additional group of
needs is felt and is worked out in language” [Whorf].

225

So far I’ve dealt with variations in perceived reality that I
can at least describe. They are close enough to my world view
(and yours, I hope) that I can describe the differences in terms of
familiar concepts. But I must acknowledge the existence of
world views so alien to mine that I can’t even grasp the central
concepts. These are exemplified by some of the Eastern
philosophies, various theologies, mystical cults. The Hopi
Indians have a world view of time and causality that can hardly
even be expressed in our vocabulary of concepts. “I find it
gratuitous to assume that a Hopi who knows only the Hopi
language and the cultural ideas of his own society has the same
notions, often supposed to be intuitions, of time and space that
we have, and that are generally assumed to be universal. In
particular, he has no general notion or intuition of time as a
smooth flowing continuum in which everything in the universe
proceeds at an equal rate, out of a future, through a present, into
a past.” “The Hopi language and culture conceals a metaphysics,
such as our so-called naive view of space and time does, or as
the relativity theory does; yet it is a different metaphysics from
either. In order to describe the structure of the universe according
to the Hopi, it is necessary to attempt ⎯ insofar as it is possible
⎯ to make explicit this metaphysics, properly describable only
in the Hopi language, by means of an approximation expressed
in our own language, somewhat inadequately it is true”
[Whorf].

Do you and I have the “real” notion of time? What shall we
make of contemporary physics, which wants us to believe that
time passes at different rates for objects traveling at different
speeds? The astronaut who has been traveling a year close to the
speed of light has been gone from us for ten years? Or is it vice
versa?

Language has an enormous influence on our perception of

reality. Not only does it affect how and what we think about, but
also how we perceive things in the first place. Rather than
serving merely as a passive vehicle for containing our thoughts,
language has an active influence on the shape of our thoughts.
“...language produces an organization of experience... language

226

first of all is a classification and arrangement of the stream of
sensory experience that results in a certain world order...”

[Whorf].

Whorf quoting Edward Sapir: “Human beings do not live in

the objective world alone, nor alone in the world of social
activity as ordinarily understood, but are very much at the mercy
of the particular language that has become the medium of
expression for their society. It is quite an illusion to imagine that
one adjusts to reality without the use of language and that
language is merely an incidental means of solving specific
problems of communication or reflection. The fact of the matter
is that the ‘real world’ is to a large extent unconsciously built up
on the language habits of the group.... We see and hear and
otherwise experience very largely as we do because the language
habits of our community predispose certain choices of
interpretation.”

“Hopi has one noun that covers every thing or being that
flies, with the exception of birds, which class is denoted by
another noun.... The Hopi actually call insect, airplane, and
aviator all by the same word, and feel no difficulty about it....
This class seems to us too large and inclusive, but so would our
class ‘snow’ to an Eskimo. We have the same word for falling
snow, snow on the ground, snow packed hard like ice, slushy
snow, wind-driven flying snow ⎯ whatever the situation may be.
To an Eskimo, this all-inclusive word would be almost
unthinkable; he would say that falling snow, slushy snow, and so
on, are sensuously and operationally different, different things to
contend with; he uses different words for them and for other
kinds of snow. The Aztecs go even farther than we in the
opposite direction, with ‘cold’, ‘ice’, and ‘snow’ all represented
by the same basic word with different terminations; ‘ice’ is the
noun form; ‘cold’, the adjectival form; and for ‘snow’, ‘ice
mist’.”

We are more ready to perceive things as entities when our
language happens to have nouns for them. For what reason does
our language happen to have the noun “schedule” for the

227

connection between, say, a train and a time, but no such familiar
noun for the connection between a person and his salary?

The way we bundle relationships is similarly affected. If we
think of the relationships “has color” and “has weight”, we might
be inclined to lump them into a single “has” relationship, with
several kinds of entities in the second domain. But if we happen
to employ the word “weighs”, then that makes it easier to think
of the second relationship as being distinct in its own right. By
what accident of linguistic evolution do we fail to have a similar
verb for the color phenomenon? (“Appears” might be a close
approximation.)

Other examples: “has salary” vs. “earns”, “has height” vs.
what?

The accidents of vocabulary: we are most prepared to
identify as entities or relationships those things for which our
vocabulary happens to contain a word. The presence of such a
word focuses our thinking onto what then appears as a singular
phenomenon. The absence of such a word renders the thought
diffuse, non-specific, non-singular.

This is all very unsatisfying. It is consistent with this
philosophy of reality (perhaps even necessary, rather than just
consistent), that I cannot see it applied consistently. I must accept
paradoxes embedded right in the process of embracing such
views. I am not, after all, such an alien creature. I see the world
in much the same terms as you do. I have a name, and an
employer, and a social security number, and a salary, and a birth
date, etc. etc. There is a reasonably accurate description of me
and my environment in several files. I have a wife, and children,
and a car, all of which I believe to be very real. In short, I can
share with you a very traditional view of reality; most of the
useful activities of my daily life are predicated on such familiar
foundations.

Well then, what’s going on? What are these contradictions all
about?

I’m really not sure, but perhaps I can try to frame an answer
in terms of purpose and scope. I am convinced, at bottom, that
no two people have a perception of reality that is identical in
every detail. In fact, a given person has different views at

228

different times ⎯ either trivially, because detailed facts change,
or in a larger sense, such as the duality of my own views.

But there is considerable overlap in all of these views. Given
the right set of people, the differences in their views may become
negligible. Reducing the number of people involved greatly
enhances this likelihood. This is what I mean by “scope”: the
number of people whose views have to be reconciled.

In addition, there is a question of purpose. Views can be
reconciled with different degrees of success to serve different
purposes. By reconciliation I mean a state in which the parties
involved have negligible differences in that portion of their
world views that is relevant to the purpose at hand. If an
involved party holds multiple viewpoints, he may agree to use a
particular one to serve the purpose at hand. Or he may be
persuaded to modify his view, to serve that purpose.

If the purpose is to arrive at an absolute definition of truth
and beauty, the chances of reconciliation are nil. But for the
purposes of survival and the conduct of our daily lives (relatively
narrow purposes), chances of reconciliation are necessarily high.
I can buy food from the grocer, and ask a policeman to chase a
burglar, without sharing these people’s views of truth and beauty.
It is an inevitable outcome of natural selection that those of us
who have survived share, within a sufficiently localized
community, a common view of certain basic staples of life. This
is fundamental to any kind of social interaction.

If the purpose is to maintain the inventory records for a
warehouse, the chances of reconciliation are again high. (How
high? High enough to make the system workably acceptable to
certain decision makers in management.) If the purpose is to
consistently maintain the personnel, production, planning, sales,
and customer data for a multi-national corporation, the chances
of reconciliation are somewhat less: the purposes are broader,
and there are more people’s views involved.

So, at bottom, we come to this duality. In an absolute sense,
there is no singular objective reality. But we can share a common
enough view of it for most of our working purposes, so that
reality does appear to be objective and stable.

229

But the chances of achieving such a shared view become
poorer when we try to encompass broader purposes, and to
involve more people. This is precisely why the question is
becoming more relevant today: the thrust of technology is to
foster interaction among greater numbers of people, and to
integrate processes into monoliths serving wider and wider
purposes. It is in this environment that discrepancies in
fundamental assumptions will become increasingly exposed.

230

231

Bibliography

[Abrial] J.R. Abrial, “Data Semantics”, in [Klimbie].
[ANSI 75] ANSI/X3/SPARC, Study Group on Database

Management Systems, Interim Report, Feb. 1975.
[ANSI 77] The ANSI/X3/SPARC DBMS Framework, Report of

the Study Group on Database Management Systems, (D.
Tsichritzis and A. Klug, editors), AFIPS Press, 1977.

[Armstrong] W.W. Armstrong, “Dependency Structures of
Database Relationships”, in J.L. Rosenfeld (ed.), Information
Processing 74, North Holland, 1974.

[Ash] W.L. Ash and E.H. Sibley, “TRAMP: An Interpretive
Associative Processor With Deductive Capabilities”, Proc.
1968 ACM Nat. Conf., 144-156.

[Astrahan 75] M.M. Astrahan and D.D. Chamberlin,
“Implementation of a Structured English Query Language”,
Comm. ACM 18 (10), Oct. 1975.

[Astrahan 76] M.M. Astrahan et al., “System R: Relational
Approach to Database Management”, ACM Transactions on
Database Systems 1 (2), June 1976, pp. 97-137.

[Bachman 75] C.W. Bachman, “Trends in Database Management
- 1975”, National Computer Conference, 1975.

[Bachman 77] C.W. Bachman and M. Daya, “The Role Concept
in Data Models”, in [VLDB 77].

[Bell] A. Bell and M.R. Quillian, “Capturing Concepts in a
Semantic Net”, Proc. Symp. on Associative Information
Techniques, Sept. 30-Oct. 1, 1968, Warren, Mich.

[Berild] S. Berild and S. Nachmens, “Some Practical
Applications of CS4 ⎯ A DBMS for Associative
Databases”, in [Nijssen 77].

[Bernstein 75] P.A. Bernstein, J.R. Swenson, and D.C.
Tsichritzis, “A Unified Approach to Functional
Dependencies and Relations”, in [SIGMOD 75].

[Bernstein 76] P.A. Bernstein, “Synthesizing Third Normal Form
Relations From Functional Dependencies”, ACM
Transactions on Database Systems 1 (4), Dec. 1976.

232

[Biller 76] H. Biller and E.J. Neuhold, “Semantics of Databases:
The Semantics of Data Models”, Technical Report 03/76,
Institut fur Informatik, University of Stuttgart, Germany.

[Biller 77] H. Biller and E.J. Neuhold, “Concepts for the
Conceptual Schema”, in [Nijssen 77].

[Bobrow] D.G. Bobrow and A. Collins (ed.), Representation and
Understanding, Academic Press, 1975.

[Boyce] R.F. Boyce and D.D. Chamberlin, “Using a Structured
English Query Language as a Data Definition Facility”, IBM
Research Report RJ1318, Dec. 1973.

[Bracchi] G. Bracchi, P. Paolini and G. Pelagatti, “Binary Logical
Associations in Data Modelling”, in [Nijssen 76].

[C&A 70] “The Empty Column”, Computers and Automation,
Jan. 1970.

[Chamberlin 74] D.D. Chamberlin and R.F. Boyce, “SEQUEL: A
Structured English Query Language”, in [SIGMOD 74].

[Chamberlin 76a] D.D. Chamberlin, “Relational Database
Management Systems”, ACM Computing Surveys 8 (1),
March 1976, pp. 43-66.

[Chamberlin 76b] D.D. Chamberlin et al., “SEQUEL 2: A
Unified Approach to Data Definition, Manipulation, and
Control”, IBM Journal of Research and Development 20 (6),
Nov. 1976, pp. 560-575.

[Chen] P.P.S. Chen, “The Entity-Relationship Model: Toward a
Unified View of Data”, ACM Transactions on Database
Systems 1 (1), March 1976, pp. 9-36.

[Childs] D.L. Childs, “Extended Set Theory”, in [VLDB 77].
[CODASYL 71] CODASYL Database Task Group Report,

ACM, New York, April 1971.
[CODASYL 73] CODASYL DDL, Journal of Development,

June 1973 (Supt. of Docs., U.S. Govt. Printing Office,
Washington D.C., catalog no. C13.6/2:113).

[Codd 70] E.F. Codd, “A Relational Model of Data for Large
Shared Data Banks”, Comm. ACM 13 (6), June 1970.

[Codd 71a] E.F. Codd, “A Database Sublanguage Founded on
the Relational Calculus”, in [SIGFIDET 71].

[Codd 71b] E.F. Codd, “Normalized Database Structure: A Brief
Tutorial”, in [SIGFIDET 71].

233

[Codd 72] E.F. Codd, “Further Normalization of the Database
Relational Model”, in R. Rustin (ed.), Database Systems
(Courant Computer Science Symposia 6), Prentice-Hall,
1972.

[Codd 74] E.F. Codd and C.J. Date, “Interactive Support for
Non-Programmers: The Relational and Network
Approaches”, in [SIGMOD 74-2].

[Date 74] C.J. Date and E.F. Codd, “The Relational and Network
Approaches: Comparison of the Application Programming
Interface”, in [SIGMOD 74-2].

[Date 77] C.J. Date, An Introduction to Database Systems
(second edition), Addison-Wesley, 1977.

[Davies] C.T. Davies, “A Logical Concept for the Control and
Management of Data”, Report AR-0803-00, IBM, 1967.

[DBTG] Same as [CODASYL].
[Delobel] C. Delobel and R.G. Casey, “Decomposition of a

Database and the Theory of Boolean Switching Functions”,
IBM Journal of Research and Development, 17 (5), Sept.
1973, pp. 374-386.

[Douque] B.C.M. Douque and G.M. Nijssen (eds.), Database
Description, North Holland, 1975. (Proc. IFIP TC-2 Special
Working Conf., Wepion, Belgium, Jan. 13-17, 1975.)

[Durchholz] R. Durchholz, “Types and Related Concepts”, in
[ICS 77].

[Earnest] C. Earnest, “Selection and Higher Level Structures in
Networks”, in [Douque].

[Engles 70] R.W. Engles, “A Tutorial on Database
Organization”, Annual Review in Automatic Programming, 7
(1), Pergamon Press, Oxford, 1972, pp. 1-64.

[Engles 71] R.W. Engles, “An Analysis of the April 1971 DBTG
Report”, in [SIGFIDET 71].

[Eswaran] K.P. Eswaran and D.D. Chamberlin, “Functional
Specifications of a Subsystem for Database Integrity”, in
[VLDB 75], pp. 48-68.

[Fabun] Don Fabun, “Communications: The Transfer of
Meaning”, Glencoe Press, 1968.

[Fadous] R. Fadous and J. Forsyth, “Finding Candidate Keys for
Relational Databases”, in [SIGMOD 75].

234

[Fagin] R. Fagin, “Multivalued Dependencies and a New Normal
Form for Relational Databases”, ACM Transactions on
Database Systems 2 (3), Sept. 1977.

[Falkenberg 76a] E. Falkenberg, “Concepts for Modelling
Information”, in [Nijssen 76].

[Falkenberg 76b] E. Falkenberg, “Significations: The Key To
Unify Database Management”, Information Systems 2 (1),
1976, pp. 19-28.

[Falkenberg 77] E. Falkenberg, “Concepts for the Coexistence
Approach to Database Management”, in [ICS 77].

[Folinus] J.J. Folinus, S.E. Madnick, and H.B. Schutzman,
“Virtual Information in Database Systems”, FDT
(SIGFIDET Bulletin) 6(2) 1974.

[Furtado] A.L. Furtado, “Formal Aspects of the Relational
Model”, Monographs in Computer Science and Computer
Applications, No. 6/76, Catholic University, Rio de Janeiro,
Brazil, April 1976.

[Goguen] J.A. Goguen, “On Fuzzy Robot Planning”, in [Zadeh].
[Griffith 73] R.L. Griffith and V.G. Hargan, “Theory of Idea

Structures”, IBM Technical Report TR02.559, April 1973.
[Griffith 75] R.L. Griffith, “Information Structures”, IBM

Technical Report TR03.013, May 1976.
[GUIDE-SHARE] “Database Management System

Requirements”, Joint Guide-Share Database Requirements
Group, Nov. 1970.

[Hall 75] P.A.V. Hall, P. Hitchcock, and S.J.P. Todd, “An Algebra
of Relations for Machine Computation”, Second ACM
Symposium on Principles of Programming Languages, Palo
Alto, California, Jan. 1975.

[Hall 76] P.A.V. Hall, J. Owlett and S.J.P. Todd, “Relations and
Entities”, in [Nijssen 76].

[Hammer] M.M. Hammer and D.J. McLeod, “Semantic Integrity
in a Relational Database System”, in [VLDB 75].

[Hayakawa] S.I. Hayakawa, Language in Thought and Action,
third edition, Harcourt Brace Jovanovich, 1972.

[Heidorn] G.E. Heidorn, “Natural Language Inputs to a
Simulation Programming System”, Report NPS-
55HD72101A, Naval Postgraduate School, Monterey, 1972.

235

[ICS 77] International Computing Symposium 1977, North
Holland, 1975, E. Morlet and D. Ribbens (eds.). (Proc.
ICS77, Liege, Belgium, April 4-7, 1977.)

[IMS] IMS/VS General Information Manual, IBM Form No.
GH20-1260.

[Jardine] D.A. Jardine, The ANSI/SPARC DBMS Model, North
Holland, 1977. (Proc. SHARE Working Conference on
DBMS, Montreal, Canada, Apr. 26-30, 1976.)

[Jastrow] Robert Jastrow, “Post-Human Intelligence”, Natural
History 86(6), June-July 1977, pp. 12-18.

[Kent 73] W. Kent, “A Primer of Normal Forms”, Technical
Report TR02.600, IBM, San Jose, California, Dec. 1973.

[Kent 76] W. Kent, “New Criteria for the Conceptual Model”, in
[Lockemann].

[Kent 77a] W. Kent, “Entities and Relationships in Information”,
in [Nijssen 77].

[Kent 77b] W. Kent, “Limitations of Record Oriented
Information Models”, IBM Technical Report TR03.028, May
1977.

[Kerschberg 76a] L. Kerschberg, A. Klug, and D. Tsichritzis, “A
Taxonomy of Data Models”, in [Lockemann].

[Kerschberg 76b] L. Kerschberg, E.A. Ozkarahan, and J.E.S.
Pacheco, “A Synthetic English Query Language for a
Relational Associative Processor”, Proc. 2nd Intl. Conf. on
Software Engineering, San Francisco, 1976.

[Klimbie] J.W. Klimbie and K.L. Koffeman (eds.), Database
Management, North Holland, 1974. (Proc. IFIP Working
Conf. on Database Management, Cargese, Corsica, France,
April 1-5, 1974.)

[Levien] R.E. Levien and M.E. Maron, “A Computer System for
Inference Execution and Data Retrieval”, Comm. ACM
1967, 10, 715-721.

[Lockemann] P.C. Lockemann and E.J. Neuhold (eds.), Systems
for Large Databases, North Holland, 1977. (Proc. Second
International Conference on Very Large Databases, Sept. 8-
10, 1976, Brussels.)

[Martin] J. Martin, Computer Data-Base Organization, Prentice-
Hall, 1975.

236

[McLeod] D.J. McLeod, “High Level Domain Definition in a
Relational Database System”, Proceedings of Conference on
Data: Abstraction, Definition, and Structure, (Salt Lake City,
Utah, March 22-24, 1976), ACM 1976.

[Mealy] G.H. Mealy, “Another Look at Data”, Proc. AFIPS 1967
Fall Joint Computer Conf., Vol. 31.

[Meltzer 75] H.S. Meltzer, “An Overview of the Administration
of Databases”, Second USA-Japan Computer Conference,
Tokyo, Aug. 28, 1975, pp. 365-370.

[Metaxides] A. Metaxides, discussion on p. 181 of [Douque].
[Mumford] E. Mumford and H. Sackman (eds.), Human Choice

and Computers, North Holland, 1975.
[Nijssen 75] G.M. Nijssen, “Two Major Flaws in the CODASYL

DDL 1973 and Proposed Corrections”, Information Systems,
Vol. 1, 1975, pp. 115-132.

[Nijssen 76] G.M. Nijssen, Modelling in Database Management
Systems, North Holland, 1976. (Proc. IFIP TC-2 Working
Conf., Freudenstadt, W. Germany, Jan. 5-9, 1976.)

[Nijssen 77] G.M. Nijssen, Architecture and Models in Database
Management Systems, North Holland, 1977. (Proc. IFIP TC-
2 Working Conf., Nice, France, Jan. 3-7, 1977.)

[Pirotte] A. Pirotte, “The Entity-Association Model: An
Information-Oriented Database Model”, in [ICS 77].

[Rissanen 73] J. Rissanen and C. Delobel, “Decomposition of
Files, a Basis For Data Storage and Retrieval”, IBM
Research Report RJ1220, May 1973.

[Rissanen 77] J. Rissanen, “Independent Components of
Relations”, ACM Transactions on Database Systems 2 (4),
Dec. 1977.

[Robinson] K.A. Robinson, “Database ⎯ The Ideas Behind the
Ideas”, Computer Journal 18 (1), Feb. 1975, pp. 7-11.

[Roussopoulos] N. Roussopoulos and J. Mylopoulus, “Using
Semantic Networks for Database Management”, in [VLDB
75], pp. 144-172.

[Sapir] E. Sapir, “Conceptual Categories in Primitive
Languages”, Science (74), 1931, p. 578.

[Schank] R.C. Schank and K.M. Colby, Computer Models of
Thought and Language, W.H. Freeman, 1973.

237

[Schmid 75] H.A. Schmid and J.R. Swenson, “On the Semantics
of the Relational Model”, in [SIGMOD 75], pp. 211-223.

[Schmid 77] H.A. Schmid, “An Analysis of Some Constructs for
Conceptual Models”, in [Nijssen 77].

[Senko 73] M.E. Senko, E.B. Altman, M.M. Astrahan, and P.L.
Fehder, “Data Structures and Accessing in Database
Systems”, IBM Systems J. 1973, 12, 30-93.

[Senko 75a] M.E. Senko, “The DDL in the Context of a
Multilevel Structured Description: DIAM II with FORAL”,
in [Douque], 239-257.

[Senko 75b] M.E. Senko, “Information Systems: Records,
Relations, Sets, Entities, and Things”, Information Systems 1
(1), 1975, pp. 1-13.

[Senko 76] M.E. Senko, “DIAM as a Detailed Example of the
ANSI SPARC Architecture”, in [Nijssen 76].

[Senko 77a] M.E. Senko, “Data structures and data accessing in
database systems past, present, future”, IBM Systems
Journal 16 (3), 1977, pp. 208-257.

[Senko 77b] M.E. Senko, “Conceptual schemas, abstract data
structures, enterprise descriptions”, in [ICS 77].

[Shapiro] S.C. Shapiro, “The Mind System. A Data Structure for
Semantic Information Processing”, Rand Corp., Santa
Monica, California, Aug. 1971.

[Sharman 75] G.C.H. Sharman, “A New Model of Relational
Database and High Level Languages”, Technical Report
TR.12.136, IBM United Kingdom, Feb. 1975.

[Sharman 77] G.C.H. Sharman, “Update-by-Dialogue: An
Interactive Approach to Database Modification”, in
[SIGMOD 77].

[Sibley] E.H. Sibley and L. Kerschberg, “Data Architecture and
Data Model Considerations”, National Computer
Conference, 1977.

[SIGFIDET 71] ACM SIGFIDET Workshop on Data
Description, Access, and Control, Nov. 11-12, 1971, San
Diego, California, E.F. Codd & A.L. Dean (eds.).

[SIGMOD 74] ACM SIGMOD Workshop on Data Description,
Access, and Control, May 1-3, 1974, Ann Arbor, Mich., R.
Rustin (ed.).

238

[SIGMOD 74-2] Volume 2 of [SIGMOD 74]: “Data Models:
Data Structure Set Versus Relational”.

[SIGMOD 75] ACM SIGMOD International Conference on
Management of Data, May 14-16, 1975, San Jose,
California, W.F. King (ed.).

[SIGMOD 77] ACM SIGMOD International Conference on
Management of Data, Aug. 3-5, 1977, Toronto, Canada,
D.C.P. Smith (ed.).

[Smith 77a] J.M. Smith and D.C.P. Smith, “Database
Abstractions: Aggregation”, Comm. ACM 20 (6), June 1977.

[Smith 77b] J.M. Smith and D.C.P. Smith, “Database
Abstractions: Aggregation and Generalization”, ACM
Transactions on Database Systems 2 (2), June 1977.

[Smith 77c] J.M. Smith and D.C.P. Smith, “Integrated
Specifications for Abstract Systems”, UUCS-77-112,
University of Utah, Sept. 1977.

[Sowa 76] J.F. Sowa, “Conceptual Graphs for a Database
Interface”, IBM J. Res. & Dev. 20 (4), July 1976.

[Sowa] J.F. Sowa, Conceptual Structures: Information
Processing in Mind and Machine, Addison-Wesley,
forthcoming.

[Stamper 73] R. Stamper, Information in Business and
Administrative Systems, John Wiley, 1973.

[Stamper 75] R. Stamper, “Information Science for Systems
Analysis”, in [Mumford].

[Stamper 77] R.K. Stamper, “Physical Objects, Human
Discourse, and Formal Systems”, in [Nijssen 77].

[Sundgren 74] Bo Sundgren, “Conceptual Foundation of the
Infological Approach to Databases”, in [Klimbie].

[Sundgren 75] Bo Sundgren, Theory of Databases, Petrocelli,
N.Y., 1975.

[Taylor] R.W. Taylor and R.L. Frank, “CODASYL Database
Management Systems”, ACM Computing Surveys 8 (1),
March 1976, pp. 67-104.

[Thomas] Lewis Thomas, The Lives of a Cell, Viking Press,
N.Y., 1974.

[Titman] P.J. Titman, “An Experimental Database System Using
Binary Relations”, in [Klimbie].

239

[Tsichritzis 75a] D. Tsichritzis, “A Network Framework for
Relation Implementation”, in [Douque].

[Tsichritzis 75b] D. Tsichritzis, “Features of a Conceptual
Schema”, CSRG Technical Report No. 56, University of
Toronto, July 1975.

[Tsichritzis 76] D. Tsichritzis and F.H. Lochovsky, “Hierarchical
Database Management Systems”, ACM Computing Surveys
8 (1), March 1976, pp. 105-124.

[Tsichritzis 77] D.C. Tsichritzis and F.H Lochovsky, Database
Management Systems, Academic Press, 1977.

[Tully] C.J. Tully, “The Unsolved Problem ⎯ A New Look At
Computer Science”, Computer Bulletin 2 (2), Dec. 1974.

[VLDB 75] Proceedings of the International Conference on Very
Large Databases, Sept. 22-24, 1975, Framingham, Mass.
(ACM, New York).

[VLDB 76] (Same as [Lockemann]).
[VLDB 77] Proceedings of the Third International Conference

on Very Large Databases, Oct. 6-8, 1977, Tokyo, Japan.
Database 9 (2), Fall 1977; SIGMOD Record 9 (4), Oct.
1977.

[Weber] H. Weber, “D-Graphs: A Conceptual Model for
Databases”, in [ICS 77].

[Whorf] Benjamin Lee Whorf, Language, Thought, and Reality,
MIT, 1956.

[Zadeh] L.A. Zadeh, K. Fu, K. Tanaka, and M. Shimura (eds.),
Fuzzy Sets And Their Applications to Cognitive and Decision
Processes, Academic Press, 1975.

[Zemanek 72] H. Zemanek, “Some Philosophical Aspects of
Information Processing”, in The Skyline of Information
Processing, North Holland, 1972 (H. Zemanek, ed.).

[Zemanek 75] H. Zemanek, “The Human Being and the
Automaton”, in [Mumford].

240

241

Detailed Contents

PREFACE TO THE SECOND EDITION..................................xv
CONTENTS ... xi
PREFACE... xix
1 ENTITIES ...1

1.1 One Thing ..2
1.2 How Many Things Is It? ..7
1.3 Change ...10
1.4 The Murderer and the Butler..13
1.5 Categories (What Is It?) ...14
1.6 Existence..18

1.6.1 How Real? ..19
1.6.2 How Long?...20

2 THE NATURE OF AN INFORMATION SYSTEM...............23
2.1 Organization...23

2.1.1 Repository ..24
2.1.2 Interface..24
2.1.3 Processor ..24

2.2 Data Description ..25
2.2.1 Purpose ...25
2.2.2 Levels of Description ...26
2.2.3 The Traditional Separation of Descriptions

and Data...31
2.3 What is “In the System”?...33
2.4 Existence Tests In Information Systems37

2.4.1 Acceptance Tests: List and Non-List37
2.4.2 An Act of Creation..38
2.4.3 Existence by Mention...39
2.4.4 Existence By Implication39

2.5 Records and Representatives ...40
3 NAMING ..47

3.1 How Many Ways?..47
3.2 What is Being Named? ..54
3.3 Uniqueness, Scope, and Qualifiers55

3.3.1 Deliberate Non-Uniqueness57
3.3.2 Effective Qualification ...58

242

Uniqueness Within Qualifier58
Singularity of Qualifier..59
Existence of Qualifier..60
Invariance of Qualifiers60

3.4 Scope of Naming Conventions60
3.5 Changing Names..61
3.6 Versions..62
3.7 Names, Symbols, Representations.................................63
3.8 Why Separate Symbols and Things?63

3.8.1 Do Names “Represent”?.......................................63
3.8.2 Simple Ambiguity ..66
3.8.3 Surrogates, Internal Identifiers68

3.9 Sameness (Equality) ..69
3.9.1 Tests..69
3.9.2 Failures ...70

4 RELATIONSHIPS ..73
4.1 Degree, Domain, and Role...74
4.2 Forms of Binary Relationships75

4.2.1 Complexity ...76
4.2.2 Category Constraints ..77
4.2.3 Self-Relation...78
4.2.4 Optionality..79
4.2.5 The Number of Forms ..79
4.2.6 Multiplicity of Relationships................................79
4.2.7 Examples ..79

4.3 Other Characteristics..80
4.3.1 Transitivity ...80
4.3.2 Symmetry ...81
4.3.3 Anti-symmetry..82
4.3.4 Implication (Composition)82
4.3.5 Consistency (Subset) ..82
4.3.6 Restrictions...82
4.3.7 Attributes and Relationships of Relationships......83
4.3.8 Names...83

4.4 Naming Conventions ...83
4.4.1 No Name ..83
4.4.2 One Name...84
4.4.3 Two Names...85

243

4.5 Relationships and Instances Are Entities85
4.6 “Computed” Relationships ..86

5 ATTRIBUTES ...89
5.1 Some Ambiguities..89
5.2 Attribute vs. Relationship ..91
5.3 Are Attributes Entities? ..94
5.4 Attribute vs. Category ..95
5.5 Options...95
5.6 Conclusion ...97

6 TYPES AND CATEGORIES AND SETS99
6.1 “Type”: A Merging of Ideas ...99

6.1.1 Guidelines...99
6.1.2 Conflicts ...100

6.2 Extended Concepts ..101
6.2.1 Arbitrary Sets..101
6.2.2 General Constraints ..101
6.2.3 Types, If You Want Them...................................103

6.3 Sets...103
6.3.1 Sets and Attributes..103
6.3.2 Type vs. Population (Intension vs.

Extension)..104
6.3.3 Representation of Sets ..105

7 MODELS ..107
7.1 General Concept of Models ...107
7.2 The Conceptual Model: Sooner, or Later?108
7.3 Models of Reality vs. Models of Data111

7.3.1 Semiotics ..111
7.4 Current Models ..113

7.4.1 Four Popular Models ..113
7.4.2 An Ironic Ambiguity...113
7.4.3 Graph Structured Models115

8 THE RECORD MODEL...117
8.1 Semantic Implications..118
8.2 The Type/Instance Dichotomy121

8.2.1 An Instance of Exactly One Type.......................121
8.2.2 Descriptions Are Not Information......................122
8.2.3 Regularity (Homogeneity)..................................124
8.2.4 Pre-definition (Stability).....................................125

244

8.3 Too Many Ways To Represent Relationships...............126
8.4 But Some Relationships Can’t Be Described128

8.4.1 Relationships Within a Record128
8.4.2 Relationships That Span Records.......................131

Domains...133
Non-symbolic Linkages.....................................134

8.4.3 When is it an Intersection Record?.....................134
8.5 And Some Relationships Can’t Even Be

Represented ...135
8.6 Do Records Represent Entities? Or

Relationships? ...138
8.6.1 No Record, No Entity?138
8.6.2 If It Has A Record, It’s An Entity(?)...................139
8.6.3 Are Relationships Entities? Are Attributes?141
8.6.4 The Create/Destroy Semantic.............................143

8.7 Distinguishability...145
8.8 Naming Practices ...146

8.8.1 Things and Their Names146
8.8.2 Structured Names ...148
8.8.3 Composite Names and the Semantics of

Relationships ...149
Redundancy ...149
Degree ...150
Domains, Implied Relationships........................150

8.8.4 The Reducibility Ambiguity151
8.8.5 Another Ambiguity ...153

8.9 Records Are Useful ..154
8.10 Implicit Constraints..154

9 THE OTHER THREE POPULAR MODELS.......................155
9.1 The Relational Model ..155
9.2 Hierarchies (IMS) ..158
9.3 Networks (DBTG) ...162

10 THE MODELING OF RELATIONSHIPS..........................165
10.1 Record Based Models ..165
10.2 Binary Versus N-ary Relationships167

10.2.1 Simplicity ...169
10.2.2 Unnecessary Choices..171

10.3 Irreducible Relationships ...172

245

10.4 Good and Bad Binaries and N-aries...........................173
10.4.1 The Binaries ...174
10.4.2 The N-aries ...179
10.4.3 A Vanishing Distinction....................................180
10.4.4 Case Models ...182

10.5 Which Relationships Are “In the System”?182
10.5.1 Explicitly Defined Relationships......................182
10.5.2 Implicit Relationships185
10.5.3 Orderings..186

10.6 Existence Lists ...188
11 ELEMENTARY CONCEPTS: ANOTHER MODEL?191

11.1 System Organization ..192
11.2 Primary Model Elements ...192

11.2.1 Objects..192
11.2.2 Symbols ..193
11.2.3 Relationships ..194
11.2.4 Executable Objects ...196

11.3 Secondary Elements: A Vernacular197
11.3.1 Type ..202
11.3.2 Naming ...203
11.3.3 Vernacular Pictures ...204
11.3.4 Sets ...205

11.4 The Name of the Model ...205
11.5 About Entities...205

11.5.1 Existence ..206
11.5.2 The Butler Did It ..206

11.6 About Symbols...207
11.7 The Symbol Stream and the Processor.......................207
11.8 About Relationships ...209

11.8.1 Entities..209
11.8.2 Existence ..209
11.8.3 Derived (Implied) Relationships210
11.8.4 Specification ...211
11.8.5 Symmetric Relationships..................................211

11.9 About Attributes ...211
11.10 Descriptions: Data About Data211
11.11 Implementations...212
11.12 Comparison With Other Models214

246

12 PHILOSOPHY ..217
12.1 Reality and Tools ...217
12.2 Points of View..219
12.3 A View of Reality...220

BIBLIOGRAPHY ..231
DETAILED CONTENTS...235

ABOUT BILL KENT

Bill Kent likes to write about information processing as well
as a variety of non-technical topics. His published technical
papers, both tutorial and advanced, cover the relational data
model, data analysis and design, entity-relationship models,
object technology, and other areas of information processing.

Bill’s career in data processing spans thirty-seven years at
IBM and Hewlett-Packard. At HP’s Research Laboratory in Palo
Alto, California, he helped develop a prototype object-oriented
database system and a follow-on prototype supporting
interoperability of heterogeneous database systems.

Bill was a founder and first chairman of the NCITS
(National Committee for Information Technology Standards)
Committee on Object Information Management (formerly ANSI
X3H7). He served as acting chair of the ANSI/SPARC DBSSG
Object-Oriented Database Task Group. Other activities include
ANSI X3H2 (Database) and IFIP TC2.6 (Data Bases), as well as
the Object Management Group (OMG), serving on their
Technical Committee, Object Model Subcommittee, and
Database Special Interest Group.

Bill enjoys writing, photography, canyon country, Tai Chi,
drumming, skiing, rafting, and a few other things. You can
discover more at his web site: http://www.bkent.net .

A brief sampler of Bill’s publications:
“A Simple Guide to Five Normal Forms in Relational

Database Theory”, Communications of the ACM, Feb. 1983.
“The Many Forms of a Single Fact”, Proc. IEEE

COMPCON, Feb. 27-Mar. 3, 1989, San Francisco.
“The Leading Edge of Database Technology”, in E.D.

Falkenberg, P. Lindgreen (eds), Information System Concepts:
An In-depth Analysis, North Holland, 1989. Also in F.H.
Lochovsky (ed), Entity-Relationship Approach to Database
Design and Querying, Elsevier Science Publishers (North
Holland), 1990.

“The Breakdown of the Information Model in Multi-
Database Systems”, SIGMOD Record, Dec 1991.

“A Rigorous Model of Object Reference, Identity, and
Existence”, Journal of Object-Oriented Programming, June
1991,

“The Objects Are Coming!”, Computer Standards and
Interfaces, July 1993.

Richard Soley and William Kent, “The OMG Object
Model”, in Modern Database Systems: The Object Model,
Interoperability, and Beyond”, Won Kim (editor), ACM
Press/Addison-Wesley, 1995.

