
A Behavioral Notion of SubtypingBARBARA H. LISKOVMIT Laboratory for Computer ScienceandJEANNETTE M. WINGCarnegie Mellon UniversityThe use of hierarchy is an important component of object-oriented design. Hierarchy allows theuse of type families, in which higher level supertypes capture the behavior that all of their subtypeshave in common. For this methodology to be e�ective, it is necessary to have a clear understandingof how subtypes and supertypes are related. This paper takes the position that the relationshipshould ensure that any property proved about supertype objects also holds for its subtype objects.It presents two ways of de�ning the subtype relation, each of which meets this criterion, and eachof which is easy for programmers to use. The subtype relation is based on the speci�cations ofthe sub- and supertypes; the paper presents a way of specifying types that makes it convenient tode�ne the subtype relation. The paper also discusses the rami�cations of this notion of subtypingon the design of type families.Categories and Subject Descriptors: D.1 [Programming Techniques]: Object-Oriented Pro-gramming; D.2.1 [Software Engineering]: Requirements/Speci�cations|Languages; Method-ologies; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and ReasoningAbout Programs|Invariants; Pre- and Post-conditions; Speci�cation Techniques; F.3.3 [Logicsand Meanings of Programs]: Studies of Program Constructs|Type StructureGeneral Terms: Design, Languages, Veri�cationAdditional Key Words and Phrases: Subtyping, formal speci�cations, Larch1. INTRODUCTIONWhat does it mean for one type to be a subtype of another? We argue that this isa semantic question having to do with the behavior of the objects of the two types:the objects of the subtype ought to behave the same as those of the supertype asfar as anyone or any program using supertype objects can tell.For example, in strongly typed object-oriented languages such as Simula 67[Dahl,B. Liskov is supported in part by the Advanced Research Projects Agency of the Department ofDefense, monitored by the O�ce of Naval Research under contract N00014-91-J-4136, and in partby the National Science Foundation under Grant CCR-8822158. J. Wing is supported in partby the Advanced Research Projects Agency, monitored by the Wright Laboratory, AeronauticalSystems Center, Air Force Materiel Command, USAF, under contract number F33615-93-1-1330.Authors' address: B. Liskov, MIT Laboratory for Computer Science, 545 Technology Square,Cambridge, MA 02139; J. Wing, School of Computer Science, Carnegie Mellon University, 5000Forbes Ave., Pittsburgh, PA 15213.Permission to copy without fee all or part of this material is granted provided that the copies arenot made or distributed for direct commercial advantage, the ACM copyright notice and the titleof the publication and its date appear, and notice is given that copying is by permission of theAssociation for Computing Machinery. To copy otherwise, or to republish, requires a fee and/orspeci�c permission.c
 1994 ACM xxxx-xxxx/xx/xxxx-xxxx $xx.xx

2 � B. Liskov and J. WingMyrhaug, and Nygaard 1970], C++[Stroustrup 1986], Modula-3[Nelson 1991], andTrellis/Owl[Scha�ert, Cooper, Bullis, Kilian, and Wilpolt 1986], subtypes are usedto broaden the assignment statement. An assignmentx: T := Eis legal provided the type of expression E is a subtype of the declared type T ofvariable x. Once the assignment has occurred, x will be used according to its\apparent" type T, with the expectation that if the program performs correctlywhen the actual type of x's object is T, it will also work correctly if the actual typeof the object denoted by x is a subtype of T.Clearly subtypes must provide the expected methods with compatible signatures.This consideration has led to the formulation of the contra/covariance rules[Black,Hutchinson, Jul, Levy, and Carter 1987; Scha�ert, Cooper, Bullis, Kilian, andWilpolt 1986; Cardelli 1988]. However, these rules are not strong enough to ensurethat the program containing the above assignment will work correctly for any sub-type of T, since all they do is ensure that no type errors will occur. It is well knownthat type checking, while very useful, captures only a small part of what it meansfor a program to be correct; the same is true for the contra/covariance rules. Forexample, stacks and queues might both have a put method to add an element anda get method to remove one. According to the contravariance rule, either could bea legal subtype of the other. However, a program written in the expectation that xis a stack is unlikely to work correctly if x actually denotes a queue, and vice versa.What is needed is a stronger requirement that constrains the behavior of sub-types: properties that can be proved using the speci�cation of an object's presumedtype should hold even though the object is actually a member of a subtype of thattype: Subtype Requirement: Let �(x) be a property provable about objects xof type T. Then �(y) should be true for objects y of type S where S isa subtype of T.A type's speci�cation determines what properties we can prove about objects.We are interested only in safety properties (\nothing bad happens"). First, prop-erties of an object's behavior in a particular program must be preserved: to ensurethat a program continues to work as expected, calls of methods made in the pro-gram that assume the object belongs to a supertype must have the same behaviorwhen the object actually belongs to a subtype. In addition, however, propertiesindependent of particular programs must be preserved because these are importantwhen independent programs share objects. We focus on two kinds of such prop-erties: invariants, which are properties true of all states, and history properties,which are properties true of all sequences of states. We formulate invariants aspredicates over single states and history properties, over pairs of states. For exam-ple, an invariant property of a bag is that its size is always less than its bound;a history property is that the bag's bound does not change. We do not addressother kinds of safety properties of computations, e.g., the existence of an object ina state, the number of objects in a state, or the relationship between objects in astate, since these do not have to do with the meanings of types. We also do notaddress liveness properties (\something good eventually happens"), e.g., the size of

A Behavioral Notion of Subtyping � 3a bag will eventually reach the bound.This paper's main contribution is to provide two general, yet easy to use, de�ni-tions of the subtype relation that satisfy the Subtype Requirement; we give informaljusti�cations that our de�nitions do indeed satisfy the requirement. Our de�nitionsextend earlier work, including the most closely related work done by America[1991],by allowing subtypes to have more methods than their supertypes. They apply evenin a very general environment in which possibly concurrent users share mutable ob-jects. Our approach is also constructive: One can prove whether a subtype relationholds by proving a small number of simple lemmas based on the speci�cations ofthe two types.Our paper makes two other contributions. First, it provides a way of specifyingobject types that allows a type to have multiple implementations and makes it con-venient to de�ne the subtyping relation. Our speci�cations are formal, which meansthat they have a precise mathematical meaning that serves as a �rm foundation forreasoning. Our speci�cations can also be used informally as described in [Liskovand Guttag 1985].Second, it explores the rami�cations of the subtype relation and shows how in-teresting type families can be de�ned. For example, arrays are not a subtype ofsequences (because the user of a sequence expects it not to change over time) and32-bit integers are not a subtype of 64-bit integers (because a user of 64-bit in-tegers would expect certain method calls to succeed that will fail when appliedto 32-bit integers). However, type families can be de�ned that group such relatedtypes together and thus allow generic routines to be written that work for all familymembers.Our paper is intentionally written in a descriptive and informal style. We giveonly an informal proof of a particular subtype relation (stacks and bags), in thestyle we expect programmers to be able to follow. And, in two separate subsectionsof Section 5, we give informal justi�cations that each of our two de�nitions satis�esthe Subtype Requirement.The paper is organized as follows. Section 2 discusses in more detail what werequire of our subtype relation and provides the motivation for our approach. Nextwe describe our model of computation and then present our speci�cation method.Section 5 presents our two de�nitions of subtyping and Section 6 discusses therami�cations of our approach on designing type hierarchies. We compare the twode�nitions in Section 7. We describe related work in Section 8 and then close witha summary of contributions.2. MOTIVATIONTo motivate the basic idea behind our notion of subtyping, let's look at an example.Consider a bounded bag type that provides a put method that inserts elements intoa bag and a get method that removes an arbitrary element from a bag. Put hasa pre-condition that checks to see that adding an element will not grow the bagbeyond its bound; get has a pre-condition that checks to see that the bag is non-empty.Consider also a bounded stack type that has, in addition to push and popmethods,a swap top method that takes an integer, i, and modi�es the stack by replacing itstop with i. Stack's push and pop methods have pre-conditions similar to bag's put

4 � B. Liskov and J. Wingand get, and swap top has a pre-condition requiring that the stack is non-empty.Intuitively, stack is a subtype of bag because both are collections that retain anelement added by put/push until it is removed by get/pop. The get method for bagsdoes not specify precisely what element is removed; the pop method for stack ismore constrained, but what it does is one of the permitted behaviors for bag's getmethod. Let's ignore swap top for the moment.Suppose we want to show stack is a subtype of bag. We need to relate the valuesof stacks to those of bags. This can be done by means of an abstraction function,like that used for proving the correctness of implementations [Hoare 1972]. A givenstack value maps to a bag value where we abstract from the insertion order on theelements.We also need to relate stack's methods to bag's. Clearly there is a correspon-dence between stack's push method and bag's put and similarly for the pop andget methods (even though the names of the corresponding methods do not match).The pre- and post-conditions of corresponding methods will need to relate in someprecise (to be de�ned) way. In showing this relationship we need to appeal to theabstraction function so that we can reason about stack values in terms of theircorresponding bag values.Finally, what about swap top? Most other de�nitions of the subtype relationhave ignored such \extra" methods, and it is perfectly adequate do so when pro-cedures are considered in isolation and there is no aliasing. In such a constrainedsituation, a program that uses an object that is apparently a bag but is actually astack will never call the extra methods, and therefore their behavior is irrelevant.However, we cannot ignore extra methods in the presence of aliasing, and also ina general computational environment that allows sharing of mutable objects bymultiple users.Consider �rst the case of aliasing. The problem here is that within a procedurean object is accessible by more than one name, so that modi�cations using oneof the names are visible when the object is accessed using the other name. Forexample, suppose � is a subtype of � and that variablesx: �y: �both denote the same object (which must, of course, belong to � or one of itssubtypes). When the object is accessed through x, only � methods can be called.However, when it is used through y, � methods can be called and the e�ects of thesemethods are visible later when the object is accessed via x. To reason about theuse of variable x using the speci�cation of its type � , we need to impose additionalconstraints on the subtype relation.Now consider the case of an environment of shared mutable objects, such asis provided by object-oriented databases (e.g., Thor [Liskov 1992] and Gemstone[Maier and Stein 1990]). (In fact, it was our interest in Thor that motivated us tostudy the meaning of the subtype relation in the �rst place.) In such systems, thereis a universe containing shared, mutable objects and a way of naming those objects.In general, lifetimes of objects may be longer than the programs that create andaccess them (i.e., objects might be persistent) and users (or programs) may accessobjects concurrently and/or aperiodically for varying lengths of time. Of course

A Behavioral Notion of Subtyping � 5there is a need for some form of concurrency control in such an environment. Weassume such a mechanism is in place, and consider a computation to be made upout of atomic units (i.e., transactions) that exclude one another. The transactionsof di�erent computations can be interleaved and thus one computation is able toobserve the modi�cations made by another.If there were subtyping in such an environment the following situation mightoccur. A user installs a directory object that maps string names to bags. Later,a second user enters a stack into the directory under some string name; such abinding is analogous to assigning a subtype object to a variable of the supertype.After this, both users occasionally access the stack object. The second user knowsit is a stack and accesses it using stack methods. The question is: What does the�rst user need to know in order for his or her programs to make sense?We think it ought to be su�cient for a user to only know about the \apparent"type of the object; the subtype ought to preserve any properties that can be provedabout the supertype. In particular, the �rst user ought to be able to reason abouthis or her use of the stack object using invariant and history properties of bag. Tohandle invariants, both of our de�nitions of subtype assume a type speci�cationincludes an explicit invariant clause that states the type invariants that must bepreserved by any of it subtypes. Our two de�nitions di�er in the way they handlehistory properties:|Our �rst de�nition deals with the history properties directly. We add to a type'sspeci�cation a constraint clause that captures exactly those history propertiesof a type that must be preserved by any of its subtypes, and we prove that eachof the type's methods preserves the constraint. Showing that � is a subtype of �requires showing that �'s constraint implies � 's (under the abstraction function).|Our second de�nition deals with history properties indirectly. For each extramethod, we require that an explanation be given of how its behavior could bee�ected by just those methods already de�ned for the supertype. The explanationguarantees that the extra method does not introduce any behavior that was notalready present, and therefore it does not interfere with any history property.For example, using the �rst approach we would state constraints for both bagsand stacks. In this particular example, the two constraints are identical; bothstate that the bound of the bag (or stack) does not change. The extra methodswap top is permitted because it does not change the stack's bound. Showing thatthe constraint for stack implies that of bag is trivial. Using the second approach,we would provide an explanation for swap top in terms of existing methods:s.swap top(i) = s.pop(); s.push(i)and we would prove that the explanation program really does simulate swap top'sbehavior.In Section 5 we present and discuss these two alternative de�nitions. First,however, we de�ne our model of computation, and then discuss speci�cations, sincethese de�ne the objects, values, and methods that will be related by the subtyperelation.

6 � B. Liskov and J. Wing3. MODEL OF COMPUTATIONWe assume a set of all potentially existing objects, Obj, partitioned into disjointtyped sets. Each object has a unique identity. A type de�nes a set of values for anobject and a set of methods that provide the only means to manipulate that object.E�ectively Obj is a set of unique identi�ers for all objects that can contain values.Objects can be created and manipulated in the course of program execution. Astate de�nes a value for each existing object. It is a pair of mappings, an environ-ment and a store. An environment maps program variables to objects; a store mapsobjects to values.State = Env � StoreEnv = Var ! ObjStore = Obj ! ValGiven a variable, x, and a state, �, with an environment, �:e, and store, �:s, we usethe notation x� to denote the value of x in state �; i.e., x� = �:s(�:e(x)). When werefer to the domain of a state, dom(�), we mean more precisely the domain of thestore in that state.We model a type as a triple, hO; V;M i, where O � Obj is a set of objects,V � Val is a set of values, andM is a set of methods. Each method for an object isa constructor, an observer, or a mutator. Constructors of an object of type � returnnew objects of type � ; observers return results of other types; mutators modify thevalues of objects of type � . An object is immutable if its value cannot change andotherwise it is mutable; a type is immutable if its objects are and otherwise it ismutable. Clearly a type can be mutable only if some of its methods are mutators.We allow mixed methods where a constructor or an observer can also be a mutator.We also allow methods to signal exceptions; we assume termination exceptions,i.e., each method call either terminates normally or in one of a number of namedexception conditions. To be consistent with object-oriented language notation, wewrite x.m(a) to denote the call of method m on object x with the sequence ofarguments a.Objects come into existence and get their initial values through creators. Unlikeother kinds of methods, creators do not belong to particular objects, but ratherare independent operations. They are the class methods; the other methods are theinstance methods. (We are ignoring other kinds of class methods in this paper.)A computation, i.e., program execution, is a sequence of alternating states andtransitions starting in some initial state, �0:�0 Tr1 �1 ::: �n�1 Trn �nEach transition, Tri, of a computation sequence is a partial function on states.A history is the subsequence of states of a computation; in this paper, we use �and to range over states in any computation, c, where � precedes in c. Thevalue of an object can change only through the invocation of a mutator; in additionthe environment can change through assignment and the domain of the store canchange through the invocation of a creator or constructor. 11This model is based on CLU semantics[Liskov, Atkinson, Bloom, Moss, Scha�ert, Schei
er, andSnyder 1981].

A Behavioral Notion of Subtyping � 7We assume the execution of each transition is atomic.Objects are never destroyed:8 1 � i � n : dom(�i�1) � dom(�i).4. SPECIFICATIONS4.1 Type Speci�cationsA type speci�cation includes the following information:|The type's name;|A description of the type's value space;|For each of the type's methods:|Its name;|Its signature (including signaled exceptions);|Its behavior in terms of pre-conditions and post-conditions.Note that the creators are missing. Creators are speci�ed separately to make it easyfor a type to have multiple implementations, to allow new creators to be added later,to allow subtypes to have di�erent creators from their supertypes, and to make itmore convenient to de�ne subtypes. We show how to specify creators in Section4.2. However, the absence of creators means that data type induction cannot beused to reason about invariant properties. In Section 4.3 we discuss how we makeup for this loss by adding invariants to type speci�cations.In our work we use formal speci�cations in the two-tiered style of Larch [Guttag,Horning, and Wing 1985]. The �rst tier de�nes sorts, which are used to de�nethe value spaces of objects. In the second tier, Larch interfaces are used to de�netypes. For example, Figure 1 gives a speci�cation for a bag type whose objects havemethods put, get, card, and equal. The uses clause de�nes the value space for thetype by identifying a sort. The clause in the �gure indicates that values of objectsof type bag are denotable by terms of sort B introduced in the BBag speci�cation;a value of this sort is a pair, helems; boundi, where elems is a mathematical mul-tiset of integers and bound is a natural number. The notation f g stands for theempty multiset, [is a commutative operation on multisets that does not discardduplicates, 2 is the membership operation, and j x j is a cardinality operation thatreturns the total number of elements in the multiset x. These operations as well asequality (=) and inequality (6=) are all de�ned in BBag.The body of a type speci�cation provides a speci�cation for each method. Sincea method's speci�cation needs to refer to the method's object, we introduce aname for that object in the for all line. Result is a way to name a method'sresult parameter. In the requires and ensures clauses x stands for an object,xpre for its value in the initial state, and xpost for its value in the �nal state.2Distinguishing between initial and �nal values is necessary only for mutable types,so we suppress the subscripts for parameters of immutable types (like integers).We need to distinguish between an object, x, and its value, xpre or xpost, because2Note that pre and post are implicitly universally quanti�ed variables over states. Also, moreformally, xpre stands for pre.s(pre.e(x)); xpost, post.s(post.e(x)).

8 � B. Liskov and J. Wingbag = typeuses BBag (bag for B)for all b: bagput = proc (i: int)requires j bpre:elems j < bpre:boundmodi�es bensures bpost:elems = bpre:elems [fig ^ bpost:bound = bpre:boundget = proc () returns (int)requires bpre:elems 6= fgmodi�es bensures bpost:elems = bpre:elems � fresultg ^ result 2 bpre:elems ^bpost:bound = bpre:boundcard = proc () returns (int)ensures result = j bpre:elems jequal = proc (a: bag) returns (bool)ensures result = (a = b)end bag Fig. 1. A Type Speci�cation for Bagswe sometimes need to refer to the object itself, e.g., in the equal method, whichdetermines whether two (mutable) bags are the same object.A method m's pre-condition, denoted m.pre, is the predicate that appears in itsrequires clause; e.g., put's pre-condition checks to see that adding an element willnot enlarge the bag beyond its bound. If the clause is missing, the pre-condition istrivially \true."A method m's post-condition, denoted m.post, is the conjunction of the predi-cates given by its modi�es and ensures clauses. A modi�es x1; . . . ; xn clause isshorthand for the predicate:8 x 2 (dom(pre) � fx1; . . . ; xng) : xpre = xpostwhich says only objects listed may change in value. A modi�es clause is a strongstatement about all objects not explicitly listed, i.e., their values may not change;if there is no modi�es clause then nothing may change. For example, card's post-condition says that it returns the size of the bag and no objects (including the bag)change, and put's post-condition says that the bag's value changes by the additionof its integer argument, and no other objects change.Methods may terminate normally or exceptionally; the exceptions are listed in asignals clause in the method's header. For example, instead of the get method wemight have hadget 0 = proc () returns (int) signals (empty)modi�es bensures if bpre:elems = f g then signal emptyelse bpost:elems = bpre:elems � fresultg ^result 2 bpre:elems ^ bpost:bound = bpre:bound

A Behavioral Notion of Subtyping � 94.2 Specifying CreatorsObjects are created and initialized through creators. Figure 2 shows speci�cationsfor three di�erent creators for bags. The �rst creator creates a new empty bagwhose bound is its integer argument. The second and third creators �x the bag'sbound to be 100. The third creator uses its integer argument to create a singletonbag. The assertion new(x) stands for the predicate:x 2 dom(post) � dom(pre)Recall that objects are never destroyed so that dom(pre) � dom(post).bag create= proc (n: int) returns (bag)requires n � 0ensures new(result) ^ resultpost = hfg; nibag create small = proc () returns (bag)ensures new(result) ^ resultpost = hfg;100ibag create single = proc (i: int) returns (bag)ensures new(result) ^ resultpost = hfig;100iFig. 2. Creator Speci�cations for Bags4.3 Type Speci�cations Need Explicit InvariantsBy not including creators in type speci�cations we lose a powerful reasoning tool:data type induction. Data type induction is used to prove type invariants. Thebase case of the rule requires that each creator of the type establish the invariant;the inductive case requires that each method preserve the invariant. Without thecreators, we have no base case, and therefore we cannot prove type invariants!To compensate for the lack of data type induction, we state the invariant explic-itly in the type speci�cation by means of an invariant clause; if the invariant istrivial (i.e., identical to \true"), the clause can be omitted. The invariant de�nesthe legal values of its type � . For example, we addinvariant j b�:elems j � b�:boundto the type speci�cation of Figure 1 to state that the size of a bounded bag neverexceeds its bound. The predicate �(x�) appearing in an invariant clause for type� stands for the predicate: For all computations, c, and all states � in c,8x : � : x 2 dom(�)) �(x�)Any additional invariant property must follow from the conjunction of the type'sinvariant and invariants that hold for the entire value space. For example, we couldshow that the size of a bag is nonnegative because this is true for all mathematicalmultiset values. Since additional invariants cannot be proved using data type in-duction, the speci�er must be careful to de�ne an invariant that is strong enoughto support all desired invariants.All creators for a type � must establish � 's invariant, I� :

10 � B. Liskov and J. WingFor each creator for type � , show for all x :� that I� [resultpost=x�].where P [a=b] stands for predicate P with every occurrence of b replaced by a. Inaddition, each method of the type must preserve the invariant. To prove this, weassume each method is called on an object of type � with a legal value (one thatsatis�es the invariant), and show that any value of a � object it produces or modi�esis legal:For each method m of � , for all x : � assume I� [xpre=x�] and showI� [xpost=x�].For example, we would need to show put, get, card, and equal each preserves theinvariant for bag. Informally the invariant holds because put's pre-condition checksthat there is enough room in the bag for another element; get either decreases thesize of the bag or leaves it the same; card and equal do not change the bag at all.The proof ensures that methods deal with only legal values of an object's type.5. THE MEANING OF SUBTYPE5.1 Specifying SubtypesTo state that a type is a subtype of some other type, we simply append a subtypeclause to its speci�cation. We allow multiple supertypes; there would be a separatesubtype clause for each. An example is given in Figure 3.A subtype's value space may be di�erent from its supertype's. For example,in the �gure the sort, S, for bounded stack values is de�ned in BStack as a pair,hitems; limiti, where items is a sequence of integers and limit is a natural number.The invariant indicates that the length of the stack's sequence component is lessthan or equal to its limit. In the pre- and post-conditions, [] stands for the emptysequence, jj is concatenation, last picks o� the last element of a sequence, andallButLast returns a new sequence with all but the last element of its argument.Under the subtype clause we de�ne an abstraction function, A, that relatesstack values to bag values by relying on the helping function, mk elems, that mapssequences to multisets in the obvious manner. (We will revisit this abstractionfunction in Section 5.2.3.) The subtype clause also lets speci�ers relate subtypemethods to those of the supertype. The subtype must provide all methods of itssupertype; we refer to these as the inherited methods.3 Inherited methods can berenamed, e.g., push for put; all other methods of the supertype are inherited withoutrenaming, e.g., equal. In addition to the inherited methods, the subtype may alsohave some extra methods, e.g., swap top. (Stack's equal method must take a bagas an argument to satisfy the contravariance requirement. We discuss this issuefurther in the next section and Section 6.1.)5.2 First De�nition: Constraint RuleOur �rst de�nition of the subtype relation relies on the addition of some informationto speci�cations, namely a constraint clause that states the history properties of3We do not mean that the subtype inherits the code of these methods but simply that it providesmethods with the same behavior (as de�ned below) as the corresponding supertype methods.

A Behavioral Notion of Subtyping � 11stack = typeuses BStack (stack for S)for all s: stackinvariant length(s� :items) � s�:limitpush = proc (i: int)requires length(spre:items) < spre:limitmodi�es sensures spost:items = spre:items jj [i] ^ spost:limit = spre:limitpop = proc () returns (int)requires spre:items 6= []modi�es sensures result = last(spre:items) ^ spost:items = allButLast(spre:items) ^spost:limit = spre:limitswap top = proc (i: int)requires spre:items 6= []modi�es sensures spost:items = allButLast(spre:items) jj [i] ^ spost:limit = spre:limitheight = proc () returns (int)ensures result = length(spre:items)equal = proc (t: bag) returns (bool)ensures result = (s = t)subtype of bag (push for put, pop for get, height for card)8st : S : A(st) = hmk elems(st:items); st:limitiwhere mk elems : Seq !M8i : Int; sq : Seqmk elems([]) = f gmk elems(sq jj [i]) = mk elems(sq) [figend stack Fig. 3. Stack Typethe type explicitly4; if the constraint is trivial (identically equal to \true"), theclause can be omitted. For example, we addconstraint b�:bound = b :boundto the speci�cation of bag to declare that a bag's bound never changes. We wouldadd a similar clause to stack's speci�cation. As another example, consider a fat setobject that has an insert but no delete method; fat sets only grow in size. Theconstraint for fat set would be:constraint 8 i : int : i 2 s�) i 2 s 4The use of the term \constraint" is borrowed from the Ina Jo speci�cation language [Scheid andHoltsberg 1992], which also includes constraints in speci�cations.

12 � B. Liskov and J. WingWe can formulate history properties as predicates over state pairs. The predicate�(x�; x) appearing in a constraint clause for type � stands for the predicate: Forall computations, c, and all states � and in c such that � precedes ,8x : � : x 2 dom(�)) �(x�; x)Note that we do not require that be the immediate successor of � in c.Just as we had to prove that methods preserve the invariant, we must show thatthey satisfy the constraint. This is captured in the hypotheses of the history rule:History Rule: For each of the i mutators m of � , for all x : � :mi:pre ^mi:post) �[xpre=x�; xpost=x]�� is a history property, e.g., the constraint, that we would like to show holds of allobjects of type � . (Recall that m.pre is the method's pre-condition and m.post isits post-condition.)Ordinarily, users of abstract types would expect to be able to reason using thehistory rule directly. This is forbidden with the constraint approach: users can onlymake deductions based on the constraint. The restriction is needed because usingthe rule directly might allow the proof of a property for the supertype that couldnot be proved for the subtype. The loss of the history rule is analogous to the lackof a data type induction rule. A practical consequence of not having a history ruleis that the speci�er must make the constraint strong enough so that all desiredhistory properties follow from it; we discuss this issue further in Section 7.The formal de�nition of the subtype relation, <, is given in Figure 4. It relatestwo types, � and � , each of whose speci�cations respectively preserves its invariant,I� and I� , and satis�es its constraint, C� and C� . In the methods and constraintrules, since x is an object of type �, its value (xpre or xpost) is a member of S andtherefore cannot be used directly in the predicates about � objects (which are interms of values in T). The abstraction function A is used to translate these valuesso that the predicates about � objects make sense.5.2.1 Discussion of De�nition. The �rst clause addresses the need to relate val-ues by de�ning the abstraction function. It requires that an abstraction functionbe de�ned for all legal values of the subtype (although it need not be de�ned forvalues that do not satisfy the subtype invariant) and that it respect the invariant:an abstraction function must map legal values of the subtype to legal values ofthe supertype. This requirement (and the assumption that the type speci�cationpreserves the invariant) su�ces to argue that invariant properties of a supertypeare preserved by the subtype.The second clause addresses the need to relate inherited methods of the subtype.Our formulation is similar to America's [1990]. The �rst two signature rules arethe standard contra/covariance rules. The exception rule says that m� may notsignal more than m� , since a caller of a method on a supertype object should notexpect to handle an unknown exception. The pre- and post-condition rules are theintuitive counterparts to the contravariant and covariant rules for signatures. Thepre-condition rule ensures the subtype's method can be called at least in any staterequired by the supertype. The post-condition rule says that the subtype method's

A Behavioral Notion of Subtyping � 13Definition of the subtype relation, <: � = hO�; S;Mi is a subtype of � = hO� ; T;Ni ifthere exists an abstraction function, A : S ! T , and a renaming map, R :M ! N, such that:(1) The abstraction function respects invariants:|Invariant Rule. 8s : S : I�(s)) I� (A(s))A may be partial, need not be onto, but can be many-to-one.(2) Subtype methods preserve the supertype methods' behavior. If m� of � is the correspondingrenamed methodm� of �, the following rules must hold:|Signature rule.|Contravariance of arguments. m� and m� have the same number of arguments. If thelist of argument types of m� is �i and that of m� is �i, then 8i : �i < �i.|Covariance of result. Either both m� and m� have a result or neither has. If there is aresult, let m� 's result type be � and m�'s be �. Then � < �.|Exception rule. The exceptions signaled by m� are contained in the set of exceptionssignaled by m� .|Methods rule. For all x : �:|Pre-condition rule. m� :pre[A(xpre)=xpre]) m� :pre:|Post-condition rule. m�:post) m� :post[A(xpre)=xpre; A(xpost)=xpost](3) Subtype constraints ensure supertype constraints.|Constraint Rule. For all computations, c, and all states � and in c such that � precedes , for all x : �:C�) C� [A(x�)=x�; A(x)=x]Fig. 4. De�nition of the Subtype Relation (Constraint Rule)post-condition can be stronger than the supertype method's post-condition; hence,any property that can be proved based on the supertype method's post-conditionalso follows from the subtype's method's post-condition.We do not include the invariant in the methods (or constraint) rule directly. Forexample, the pre-condition rule could have been(m� :pre[A(xpre)=xpre] ^ I� [A(xpre)=xpre])) m� :pre:We omit adding the invariant because if it is needed in doing a proof it can alwaysbe assumed, since it is known to be true for all objects of its type.Finally, the third clause succinctly and directly states that constraints must bepreserved. This requirement (and the assumption that each type speci�cation sat-is�es its constraint) su�ces to argue that history properties of a supertype arepreserved.5.2.2 Informal Justi�cation of De�nition. In this section we show that our de�-nition of the subtype relation guarantees that the Subtype Requirement holds.Recall that there are two kinds of properties of interest, program-speci�c andprogram-independent. The Subtype Requirement addresses the �rst of these prop-erties by requiring that the behavior of calls of supertype methods be preserved bycorresponding subtype methods. It addresses the second by requiring that invariantand history properties of supertype objects also hold for subtype objects.The requirement about corresponding subtype methods preserving behavior fol-lows directly from the signature and methods rules. The pre-condition rule guar-antees that any call made to a supertype method can also be made to the corre-sponding subtype method, and the post-condition rule guarantees that supertype

14 � B. Liskov and J. Wingmethod's post-condition holds after the call.To show that invariant and history properties are preserved, we proceed as fol-lows. We view each type speci�cation as a theory presentation, i.e., a set of symbols,rules for forming well-formed formulae, a set of axioms, and a set of inference rules.A type's theory is the set of all formulae provable from the axioms and rules givenin the type's speci�cation; as with any theory-based approach, it is clear that if thetype speci�cation is not strong enough, there might be some properties true butsimply not provable. We need to show that the theory of the supertype is containedin the theory of the subtype. The containment relation between theories impliesthat any property of a supertype must be one of the subtype; the subtype mayhave additional properties. This theory-based approach is exactly in the spirit ofthe Larch approach, e.g., see [Wing 1983].For the constraint approach, a type's theory contains formulae about an object'svalue space (e.g., set values have no duplicate elements), the invariant, and theconstraint, plus all formulae that follow from these using ordinary rules of �rstorder logic, but explicitly not using the history rule. We use the abstraction functionand renaming map as a theory interpretation, mapping symbols and formulae ofthe subtype's theory so they can be interpreted in terms of the supertype's. Theinvariant and constraint rules ensure that the speci�cation of a subtype can onlyadd invariant and history properties to those of a supertype. Thus, the subtyperelation ensures that the containment relation holds.5.2.3 Applying the De�nition of Subtyping as a Checklist. Proofs of the subtyperelation are usually obvious and can be done by inspection. Typically, the onlyinteresting part is the de�nition of the abstraction function; the other parts ofthe proof are usually trivial. However, this section goes through the steps of aninformal proof just to show what kind of reasoning is involved. Formal versions ofthese informal proofs are given in [Liskov and Wing 1992].Let's revisit the stack and bag example using our de�nition as a checklist. Here� = hOstack; S;fpush; pop; swap top;height; equalgi, and � = hObag; B; fput;get; card; equalgi. Recall that we represent a bounded bag's value as a pair,helems; boundi, of a multiset of integers and a �xed bound, and a bounded stack'svalue as a pair, hitems; limiti, of a sequence of integers and a �xed bound. Itcan easily be shown that each speci�cation preserves its invariant and satis�es itsconstraint.We use the abstraction function and the renaming map given in the speci�cationfor stack in Figure 3. The abstraction function states that for all st : SA(st) = hmk elems(st:items); st:limitiwhere the helping function, mk elems : Seq ! M , maps sequences to multisetsand states that for all sq : Seq; i : Int:mk elems([]) = f gmk elems(sq jj [i]) = mk elems(sq) [figA is partial; it is de�ned only for sequence{natural numbers pairs, hitems; limiti,where limit is greater than or equal to the size of items. We can show that Arespects invariants by a simple proof of induction on the length of the sequence ofa bounded stack.

A Behavioral Notion of Subtyping � 15The renaming map R isR(push) = putR(pop) = getR(height) = cardR(equal) = equalChecking the signature and exception rules is easy and could be done by the com-piler.Next, we show the correspondences between push and put, between pop and get,etc. Let's look at the pre- and post-condition rules for just one method, push.Informally, the pre-condition rule for put/push requires that we show5:j A(spre):elems j < A(spre):bound)length(spre:items) < spre:limitIntuitively, the pre-condition rule holds because the length of stack is the same asthe size of the corresponding bag and the limit of the stack is the same as the boundfor the bag. Here is an informal proof with slightly more detail:(1) A maps the stack's sequence component to the bag's multiset by putting allelements of the sequence into the multiset. Therefore the length of the sequencespre:items is equal to the size of the multiset A(spre):elems.(2) Also, A maps the limit of the stack to the bound of the bag so that spre:limit =A(spre):bound.(3) From put's pre-condition we know j A(spre):elems j < A(spre):bound.(4) push's pre-condition holds by substituting equals for equals.Note the role of the abstraction function in this proof. It allows us to relate stackand bag values, and therefore we can relate predicates about bag values to thoseabout stack values and vice versa. Also, note how we depend on A being a function(in step (4) where we use the substitutivity property of equality).The post-condition rule requires that we show push's post-condition implies put's.We can deal with the modi�es and ensures parts separately. The modi�es partholds because the same object is mentioned in both speci�cations. The ensurespart follows from the de�nition of the abstraction function.Finally, the constraint rule requires that we show that the constraint on stacks:s�:limit = s :limitimplies that on bags:A(s�):bound = A(s):boundThis is true because the length of the sequence component of a stack is the sameas the size of the multiset component of its bag counterpart.Note that we do not have to say anything speci�c for swap top; it is taken care ofjust like all the other methods when we show that the speci�cation of stack satis�esits constraint.5Note that we are reasoning in terms of the values of the object, s, and that b and s refer to thesame object.

16 � B. Liskov and J. Wing5.3 Second De�nition: Extension MapWith the constraint approach users cannot use the history rule to deduce historyproperties. Our second approach allows them to do so. It requires that we \explain"each extra method in terms of existing methods. Since the extra methods are notcalled by users of the supertype, we only require that any mutations made by theextra methods (when called by other users, for example) are not surprising, i.e.,they could have occurred by calls on the existing methods. If such explanationsare possible, the extra methods do not add any behavior that could not have beene�ected in their absence. Therefore, all supertype properties, including historyproperties, are preserved.In our alternative de�nition, therefore, we do not add any constraints to our typespeci�cation (and thus remove the requirement that a type speci�cation has to sat-isfy its constraint). Instead, to show that � is a subtype of � we require a thirdmapping, which we call an extension map, that is de�ned for all extra methodsintroduced by the subtype. The extension map \explains" the mutation behaviorof each extra method as a program expressed in terms of inherited methods. In-teresting explanations are needed only for mutators; non-mutators always have the\empty" explanation, �.Figure 5 gives the alternative de�nition. As before, we assume each type speci�-cation preserves its invariant. In de�ning the extension map, we intentionally leaveunspeci�ed the language in which one writes a program, but imagine that it hasthe usual control structures, assignment, procedure call, etc.5.3.1 Discussion of De�nition. The �rst and second clauses are the same as inthe �rst de�nition except that the pre-condition rule is stronger; we discuss theneed for the stronger pre-condition in Section 5.3.2.The third clause of the de�nition requires what is shown in the diamond diagramin Figure 6, read from top to bottom. We must show that the abstract value of thesubtype object reached by running the extra method m is also reached by runningm's explanation program. This diagram is not quite like a standard commutativediagram because we are applying subtype methods to the same subtype object inboth cases (x.m(a) and E(x.m(a))) and then showing the two values obtained mapvia the abstraction function to the same supertype value.The extension rule constrains only what an explanation program does to itsmethod's object, not to other objects. This makes sense because explanation pro-grams do not really run. Its purpose is to explain how an object could be in aparticular state. Its other arguments are hypothetical; they are not objects thatactually exist in the object universe.The diamond rule is stronger than necessary because it requires equality betweenabstract values. We need only the weaker notion of observable equivalence (e.g., seeKapur's de�nition[Kapur 1980]), since values that are distinct may not be observ-ably di�erent if the supertype's set of methods (in particular, observers) is too weakto let us perceive the di�erence. In practice, such types are rare and therefore wedid not bother to provide the weaker de�nition.Preservation of history properties is ensured by a combination of the methodsand extension rules; they together guarantee that any call of a subtype methodcan be explained in terms of calls of methods that are already de�ned for the

A Behavioral Notion of Subtyping � 17Definition of the subtype relation, <: � = hO�; S;Mi is a subtype of � = hO� ; T;Ni ifthere exists an abstraction function, A, a renaming map, R, and an extension map, E, such that:(1) The abstraction function respects invariants:|Invariant Rule. 8s : S : I�(s)) I� (A(s))(2) Subtype methods preserve the supertype methods' behavior. If m� of � is the correspondingrenamed methodm� of �, the following rules must hold:|Signature rule.|Contravariance of arguments. m� and m� have the same number of arguments. If thelist of argument types of m� is �i and that of m� is �i, then 8i : �i < �i.|Covariance of result. Either both m� and m� have a result or neither has. If there is aresult, let m� 's result type be � and m�'s be �. Then � < �.|Exception rule. The exceptions signaled by m� are contained in the set of exceptionssignaled by m� .|Methods rule. For all x : �:|Pre-condition rule. m� :pre[A(xpre)=xpre] = m�:pre:|Post-condition rule. m�:post) m� :post[A(xpre)=xpre; A(xpost)=xpost](3) The extension map, E : O� �M � Obj� ! Prog, must be de�ned for each method, m, notin dom(R). We write E(x:m(a)) for E(x;m; a) where x is the object on which m is invokedand a is the (possibly empty) sequence of arguments to m. E's range is the set of programs,including the empty program denoted as �.|Extension rule. For each extra method,m, of x : �, the following conditions must hold for�, the program to which E(x:m(a)) maps:|The input to � is the sequence of objects [x]jja.|The set of methods invoked in � is contained in the union of dom(R) and the set ofmethods of all types other than � and �'s subtypes.|Diamond rule. We need to relate the abstracted values of x at the end of either callingjust m or executing �. Let �1 be the state in which both m is invoked and � starts.Assume m:pre holds in �1 and the call to m terminates in state �2. Then we requirethat � terminates in state andA(x�2) = A(x):Note that if � = �; = �1.Fig. 5. De�nition of the Subtype Relation (Extension Rule)supertype. To show that history properties are preserved by inherited mutators,we use the methods rule. However, because the properties are not stated explicitlyfor the extra methods, they cannot be proved for them. Instead extra methodsmust satisfy any provable property, which is surely guaranteed if the extra methodscan be explained in terms of the inherited methods via the extension map.5.3.2 Informal Justi�cation of De�nition. To justify this de�nition with respectto the Subtype Requirement, we proceed as we did in Section 5.2.2, and the require-ment about corresponding subtype methods preserving behavior follows directlyfrom the signature and methods rules just as it did before. To show that invariantand history properties are preserved, we again view a type speci�cation as a theorypresentation. In this case, however, a type's theory contains the formulae aboutan object's value space, and the invariant, plus all formulae that follow from theseusing ordinary rules of �rst order logic and the history rule. In other words, we donot place a constraint in the theory, but instead use the history rule.As before we must show that the subtype relation implies that the theory of the

18 � B. Liskov and J. Wing
ρ ψxx :S :S
2

A A

E(x.m(a))

y :T

x.m(a)

ρx :S
1

Fig. 6. The Diamond Diagramsupertype is contained in the theory of the subtype. Also as before, we use theabstraction function and renaming map as part of a theory interpretation. Theonly di�erence is that now we must show that any property that can be provedusing the history rule for the supertype can also be proved using the history rulefor the subtype.Consider some history property � of supertype � . We need to show that thesubtype relation guarantees � holds for each object x of � a subtype of � . Theexplanation map allows us to consider only the inherited methods. Thus, we needto show for each inherited method m� of �:m�:pre ^m� :post) �[A(x�)=x�;A(x)=x]From the methods rule, we know that (modulo the abstraction function) the pre-conditions are the same and the post-condition of the subtype implies that of thesupertype, so we havem�:pre ^m� :post) m� :pre[A(x�)=x�] ^m� :post[A(x�)=x�;A(x)=x]Since by assumption � holds for the supertype, we havem� :pre[A(x�)=x�]^m� :post[A(x�)=x�; A(x)=x]) �[A(x�)=x�; A(x)=x]which lets us conclude what we need to show.This reasoning shows why we require equality in the pre-condition rule. Toguarantee the use of the history rule we need to know thatm�:pre) m� :pre[A(x�)=x�]But we also needm� :pre[A(x�)=x�]) m� :pre

A Behavioral Notion of Subtyping � 19so that we can show that subtype methods preserve the behavior of correspondingsupertype methods. Therefore we require that pre-conditions of associated methodsbe equal.The following example illustrates what would go wrong if the pre-conditions werenot equal. Suppose we have a window type with a single mutator, move, that movesits window w only to the northeast:move = proc (v: vector)requires v:x > 0 ^ v:y > 0ensures wpost:center = wpre:center + vUsing the history rule, we could prove that windows move only northeasterly asa history property and a user of windows could depend on this property alwaysholding for them. Suppose the my window type is just like window except with aweaker move method that moves its window in any direction:move = proc (v: vector)ensures wpost:center = wpre:center + vThe pre-condition rule given previously (as part of the constraint approach) holdsbut the history property (that windows only move northeasterly) does not, andtherefore my window cannot be a subtype of window. The more restricted pre-condition rule disallows this case.6 Note that America [1990] uses the weakerpre-condition rule of Figure 4, and therefore he would erroneously allow subtyperelations like this one, which do not preserve history properties.5.3.3 The Bag and Stack Example Again. The alternative de�nition of subtypingis also used as a checklist to prove a subtype relation. Besides the abstractionfunction, the only other interesting issue is the de�nition of the extension map. Aswas the case with the constraint approach, the actual proofs are usually trivial.To prove that stack is a subtype of bag we follow the same procedure as inSection 5.2.3, except we need to show that the pre-conditions are identical, a trivialexercise for this example. We must additionally de�ne an extension map to de�neswap top's e�ect. As stated earlier, it has the same e�ect as that described by theprogram, �, in which a call to pop is followed by one to push:E(s.swap top(i)) = s.pop(); s.push(i)Showing the extension rule is just like showing that an implementation of a pro-cedure satis�es the procedure's speci�cation, except that we do not require equalvalues at the end, but just equal abstract values. (In fact, such a proof is identicalto a proof showing that an implementation of an operation of an abstract data typesatis�es its speci�cation[Hoare 1972].) In doing the reasoning we rely on the spec-i�cations of the methods used in the program. Here is an informal argument forswap top. We note �rst that since s.swap top(i) terminates normally, so does thecall on s.pop() (their pre-conditions are the same). Pop removes the top element,reducing the size of the stack so that push's pre-condition holds, and then push putsi on the top of the stack. The result is that the top element has been replaced by6Thanks to Ian Maung for pointing out this problem and inspiring this example.

20 � B. Liskov and J. Wingi. Thus, s�2 = s , where �2 is the termination state if we run swap top and isthe termination state if we run �. Therefore A(s�2) = A(s), since A is a function.6. TYPE HIERARCHIESThe requirement we impose on subtypes is very strong and raises a concern that itmight rule out many useful subtype relations. To address this concern we lookedat a number of examples. We found that our technique captures what people wantfrom a hierarchy mechanism, but we also discovered some surprises.The examples led us to classify subtype relationships into two broad categories.In the �rst category, the subtype extends the supertype by providing additionalmethods and possibly additional \state." In the second, the subtype is more con-strained than the supertype. We discuss these relationships below.6.1 Extension SubtypesA subtype extends its supertype if its objects have extra methods in addition tothose of the supertype. Abstraction functions for extension subtypes are onto, i.e.,the range of the abstraction function is the set of all legal values of the supertype.The subtype might simply have more methods; in this case the abstraction func-tion is one-to-one. Or its objects might also have more \state," i.e., they mightrecord information that is not present in objects of the supertype; in this case theabstraction function is many-to-one.As an example of the one-to-one case, consider a type intset (for set of integers)with methods to insert and delete elements, to select elements, and to providethe size of the set. A subtype, my intset, might have more methods, e.g., union,is empty. Here there is no extra state, just extra methods. If we are using theextension map approach, we must provide explanations for the extra methods, butfor all but mutators, these are trivial. Thus, if union is a pure constructor, it hasthe empty explanation, �; otherwise it requires a non-trivial explanation, e.g., interms of insert. If we are using the constraint approach, we must prove that thesubtype's constraint implies that of the supertype. Often the two constraints willbe identical, e.g., both intset and my intset might have the trivial constraint.Using either approach, it is easy to discover when a proposed subtype really isnot one. For example, intset is not a subtype of fat set because fat sets only growwhile intsets grow and shrink, i.e., it does not preserve various history properties offat set. If we are using the constraint approach, we will be unable to show that theintset constraint (which is trivial) implies that of fat set; with the extension mapapproach, we will not be able to explain the e�ect of intset's delete method.As a simple example of a many-to-one case, consider immutable pairs and triples(Figure 7). Pairs have methods that fetch the �rst and second elements; tripleshave these methods plus an additional one to fetch the third element. Triple isa subtype of pair and so is semi-mutable triple with methods to fetch the �rst,second, and third elements and to replace the third element because replacing thethird element does not a�ect the �rst or second element. This example shows thatit is possible to have a mutable subtype of an immutable supertype, provided themutations are invisible to users of the supertype.Mutations of a subtype that would be visible through the methods of an im-mutable supertype are ruled out. For example, an immutable sequence, whose

A Behavioral Notion of Subtyping � 21
immutable pair

immutable triple semi-mutable tripleFig. 7. Pairs and Triples
person

student employee

student_employeeFig. 8. Person, Student, and Employeeelements can be fetched but not stored, is not a supertype of mutable array, whichprovides a store method in addition to the sequence methods. For sequences we canprove elements do not change; this is not true for arrays. The attempt to constructthe subtype relation will fail because there is no way to explain the store methodvia an extension map or because the constraint for sequences does not follow fromthat for arrays.Many examples of extension subtypes are found in the literature. One commonexample concerns persons, employees, and students (Figure 8). A person objecthas methods that report its properties such as its name, age, and possibly itsrelationship to other persons (e.g., its parents or children). Student and employeeare subtypes of person; in each case they have additional properties, e.g., a studentid number, an employee employer and salary. In addition, type student employee isa subtype of both student and employee (and also person, since the subtype relationis transitive). In this example, the subtype objects have more state than those ofthe supertype as well as more methods.Another example from the database literature concerns di�erent kinds of ships[Hammer and McLeod 1981]. The supertype is generic ships with methods to deter-mine such things as who is the captain and where the ship is registered. Subtypescontain more specialized ships such as tankers and freighters. There can be quite anelaborate hierarchy (e.g., tankers are a special kind of freighter). Windows are an-other well-known example [Halbert and O'Brien 1987]; subtypes include borderedwindows, colored windows, and scrollable windows.Common examples of subtype relationships are allowed by our de�nition pro-vided the equal method (and other similar methods) are de�ned properly in the

22 � B. Liskov and J. Wingsubtype. Suppose supertype � provides an equal method and consider a particularcall x.equal(y). The di�culty arises when x and y actually belong to �, a subtypeof � . If objects of the subtype have additional state, x and y may di�er whenconsidered as subtype objects but ought to be considered equal when considered assupertype objects.For example, consider immutable triples x = h0;0;0i and y = h0;0; 1i. Supposethe speci�cation of the equal method for pairs says:equal = proc (q: pair) returns (bool)ensures result = (p:first = q:first ^ p:second = q:second)(We are using p to refer to the method's object.) However, we would expect twotriples to be equal only if their �rst, second, and third components were equal. If aprogram using triples had just observed that x and y di�er in their third element,we would expect x.equal(y) to return \false," but if the program were using themas pairs, and had just observed that their �rst and second elements were equal, itwould be wrong for the equal method to return false.The way to resolve this dilemma is to have two equal methods in triple:pair equal = proc (p: pair) returns (bool)ensures result = (p:first = q:first ^ p:second = q:second)triple equal = proc (p: triple) returns (bool)ensures result = (p:first = q:f irst ^ p:second = q:second^ p:third = q:third)One of them (pair equal) simulates the equal method for pair; the other(triple equal) is a method just on triples.The problem is not limited to equality methods. It also a�ects methods that\expose" the abstract state of objects, e.g., an unparse method that returns astring representation of the abstract state of its object. x.unparse() ought to returna representation of a pair if called in a context in which x is considered to be a pair,but it ought to return a representation of a triple in a context in which x is knownto be a triple (or some subtype of triple).The need for several equality methods seems natural for realistic examples. Forexample, asking whether e1 and e2 are the same person is di�erent from askingif they are the same employee. In the case of a person holding two jobs, theanswer might be true for the question about person but false for the questionabout employee.6.2 Constrained SubtypesThe second type of subtype relation occurs when the subtype is more constrainedthan the supertype. In this case, the supertype speci�cation is written in a waythat allows variation in behavior among its subtypes. Subtypes constrain the su-pertype by reducing the variability. The abstraction function is usually into ratherthan onto. The subtype may extend those supertype objects that it simulates byproviding additional methods and/or state.A very simple example concerns elephants. Elephants come in many colors (re-alistically grey and white, but we will also allow blue ones). However all albino

A Behavioral Notion of Subtyping � 23
elephant

royal albinoFig. 9. Elephant Hierarchyelephants are white and all royal elephants are blue. Figure 9 shows the elephanthierarchy. The set of legal values for regular elephants includes all elephants whosecolor is grey or blue or white:invariant e�:color = white _ e�:color = grey _ e�:color = blueThe set of legal values for royal elephants is a subset of those for regular elephants:invariant e�:color = blueand hence the abstraction function is into. The situation for albino elephants is sim-ilar. This simple example has led others to de�ne a subtyping relation that requiresnon-monotonic reasoning [Lipeck 1992], but we believe it is better to use variabilityin the supertype speci�cation and straightforward reasoning methods. However,the example shows that a speci�er of a type family has to anticipate subtypes andcapture the variation among them in the speci�cation of the supertype.The bag type discussed in Section 4.1 has two kinds of variability. First, asdiscussed earlier, the speci�cation of get is nondeterministic because it does notconstrain which element of the bag is removed. This nondeterminism allows stackto be a subtype of bag: the speci�cation of pop constrains the nondeterminism. Wecould also de�ne a queue that is a subtype of bag; its dequeue method would alsoconstrain the nondeterminism of get but in a way di�erent from pop.In addition, the actual value of the bound for bags is not de�ned; it can be anynatural number, thus allowing subtypes to have di�erent bounds. This variabilityshows up in the speci�cation of put, where we do not say what speci�c bound valuecauses the call to fail. Therefore, a user of put must be prepared for a failureunless it is possible to deduce from past evidence, using the history property (orconstraint) that the bound of a bag does not change, that the call will succeed.A subtype of bag might limit the bound to a �xed value, or to a smaller range.Several subtypes of bag are shown in Figure 10; mediumbags have various bounds,so that this type might have its own subtypes, e.g., bag 150.The bag hierarchy may seem counterintuitive, since we might expect that bagswith smaller bounds should be subtypes of bags with larger bounds. For example,we might expect smallbag to be a subtype of largebag. However, the speci�cationsfor the two types are incompatible: the bound of every largebag is 232, which isclearly not true for smallbags. Furthermore, this di�erence is observable via themethods: It is legal to call the put method on a largebag whose size is greater thanor equal to 20, but the call is not legal for a smallbag. Therefore the pre-conditionrule is not satis�ed.Although the bag type can have subtypes with di�erent bounds, it is not a

24 � B. Liskov and J. Wing
bag

largebag mediumbag smallbag

(100 <= bound(b) <= 1000) (bound(b) = 20)

bag_150

(bound(b) = 150)

32(bound(b) = 2) Fig. 10. A Type Family for Bagsvalid supertype of a dynamic bag type where the bounds of the bags can changedynamically. Dynamic bags would have an additional method, change bound:change bound = proc (n: int)requires n � jbpre:elemsjmodi�es bensures bpost:elems = bpre:elems ^ bpost:bound = nIf we wanted a type family that included both dynamic bag and bag, we wouldneed to de�ne a supertype in which the bound is allowed, but not required, to vary.Figure 11 shows the new type hierarchy.This example points out an interesting di�erence between the two subtype def-initions. If we are using the extension map approach, varying bag would need tohave a change bound method that allows the bag's bound to change, but does notrequire it. The method is needed because otherwise the history rule would allow usto deduce that the bound does not change! The nondeterminism in its speci�cationis resolved in its subtypes; bag (and its subtypes) provides a change bound methodthat leaves the bound as it was, while dynamic bag changes it to the new bound.Note that for bag to be a subtype of varying bag, it must have a change boundmethod (in addition to its other methods), even though the method is not interest-ing.On the other hand, if we are using the constraint approach, varying bag and bagneed not have a change bound method. Instead, varying bag simply has the trivialconstraint. This means that its users cannot deduce anything about the bounds ofits objects: the bound of an object might change or it might not. Therefore it canhave both bag and dynamic bag as subtypes. The constraint for bag (that a bag'sbound does not change) allows users of its objects to depend on this property.The varying bag example illustrates a subtype that reduces variability in theconstraint. The constraint for varying bag can be thought of as being \either abag's bound changes or it does not"; the constraint for bounded bag reduces thisvariability by making a choice (\the bag's bound does not change"). A similar

A Behavioral Notion of Subtyping � 25
varying_bag

(bound may change or stay the same)

dynamic_bag bag

(bound may change) (bound stays the same)

[...as in Fig. 10...]Fig. 11. Another Type Family for Bags
counter

(value never decreases)

incrementer

(value never decreases)

doubler

(value doubles)

multiplier

(value multiplies)Fig. 12. Type Family for Countersexample is a family of integer counters shown in Figure 12. When a counter isadvanced, we only know that its value gets bigger, so that the constraint is simplyconstraint c� � c The doubler and multiplier subtypes have stronger constraints. For example, amultiplier's value always increases by a multiple, so that its constraint is:constraint 9 n : int : [n > 0 ^ c� = n � c]For a family like this, we might choose to have an advance method for counter (sothat each of its subtypes is constrained to have this method) or we might not, butthis choice is available to us only if we use the constraint method.In the case of the bag family illustrated in Figure 10, all types in the hierarchymight actually be implemented. However, sometimes supertypes are not intendedto be implemented; instead they are virtual types that let us de�ne the propertiesall subtypes have in common. Varying bag is an example of such a type.Virtual types are also needed when we construct a hierarchy for integers. Smallerintegers cannot be a subtype of larger integers because of observable di�erences inbehavior; for example, an over
ow exception that would occur when adding two

26 � B. Liskov and J. Wing
integer

64-bit-int regular_int

32-bit-int 16-bit-intFig. 13. Integer Family32-bit integers would not occur if they were 64-bit integers. Also, larger integerscannot be a subtype of smaller ones because exceptions do not occur when expected.However, we clearly would like integers of di�erent sizes to be related. This isaccomplished by designing a virtual supertype that includes them. Such a hierarchyis shown in Figure 13, where integer is a virtual type. Here integer types withdi�erent sizes are subtypes of integer. In addition, small integer types are subtypesof regular int, another virtual type. Such a hierarchy might have a structure likethis, or it might be
atter by having all integer types be direct subtypes of integer.7. COMPARING THE TWO DEFINITIONSIn this section, we compare the two de�nitions and show why we prefer the con-straint approach.The constraint approach is appealing because it is simple and direct. The speci-�cation visually highlights a type's history properties that must be preserved by itssubtypes. Showing that an implication holds is more straightforward than showingthe diamond diagram holds.Explicit constraints allow us to rule out unintended properties that happen to betrue because of an error in a method speci�cation. Having both the constraint andthe method speci�cations is a form of useful redundancy: If the two are not consis-tent, this indicates an error in the speci�cation. The error can then be removed (bychanging either the constraint or some method speci�cation). Therefore, includingconstraints in speci�cations makes for a more robust methodology.Explicit constraints also allow us to state the common properties of type familiesdirectly. With the explanation approach, it is sometimes necessary to introduceextra methods in the supertype to ensure that history properties that do not hold forsubtypes cannot be proved for supertypes. An example was given in Section 6, whenwe discussed the varying bag type. Being able to state everything declarativelyseems like a particularly important advantage of the constraint approach.The constraint approach is more permissive than the explanation approach. Theexplanation approach requires that the pre-conditions of the inherited methodsbe identical to those of the corresponding supertype methods; with the constraintapproach, a subtype's method's pre-condition can be weaker than that of the super-type. For example, consider the northeasterly-moving windows discussed in Section5.3.2. It may be that the speci�er of this type did not intend to have such a strongconstraint on these windows. With the constraint approach, the intention is stated

A Behavioral Notion of Subtyping � 27explicitly, e.g., the constraint might have been \true" in this case. But with theexplanation approach the stronger pre-condition rule is needed to ensure that anyhistory property that might be proved about the supertype can be proved aboutthe subtype.A disadvantage of the constraint approach is the loss of the history rule. Usersare not permitted to use the history rule because if they did, they might be ableto prove history properties that a subtype did not ensure. Since there is no historyrule associated with the type speci�cation, the speci�er must be careful to de�nea strong enough constraint. For example, suppose the de�ner of fat set mistakenlygives the following constraint:constraint j s� j � j s jUsers would then be unable to deduce that once an element is added to a fat setit will always be there (since they are not allowed to use the history rule). How-ever, although speci�ers have to be more careful, getting the constraint part of thespeci�cation \right" is no more di�cult than getting the rest of the speci�cation\right." And, in our experience the desired constraint is usually obvious.The explanation approach has the advantage that it may be more appealingto programmers because it is more intuitive and because it is operational. Anexplanation is just a program and many people are better at thinking operationallythan de�nitionally. The explanation approach is especially nice in a common case:the subtype adds some extra methods but does not change any of the existing ones.Note that in this case the stricter pre-condition rule will automatically be satis�ed.In summary, having an explicit constraint is attractive because the subtype re-lation is simple, it allows us to state properties of type families declaratively, andthe constraint acts as a check on the correctness of a speci�cation. The drawbackis that if some property is left out of the constraint, there is no way users can makeuse of it.One �nal point: Any system (whether on-line or not) in which types are speci�edand subtype relations are de�ned must settle on just one of the two approaches.Our own preference would be the constraint approach. However, someone designinga type family may �nd it useful to keep both de�nitions in mind. For example, theexplanation approach may be easier to use when developing speci�cations of newsubtypes. It seems natural to debug the speci�cations of the extra methods in thisway, i.e., there is a mistake in the subtype hierarchy if an extra method cannot beexplained.8. RELATED WORKSome of the research on de�ning subtype relations is concerned with capturingconstraints on method signatures via the contra/covariance rules, such as thoseused in languages like Trellis/Owl [Scha�ert, Cooper, Bullis, Kilian, and Wilpolt1986], Emerald[Black, Hutchinson, Jul, Levy, and Carter 1987], Quest [Cardelli1988], Ei�el [Meyer 1988], POOL [America 1990], and to a limited extent Modula-3[Nelson 1991]. Our rules place constraints not just on the signatures of an object'smethods, but also on their behavior.Our work is most similar to that of America [1991], who has proposed rules fordetermining based on type speci�cations whether one type is a subtype of another.

28 � B. Liskov and J. WingMeyer [1988] also uses pre- and post-condition rules similar to America's and ours.Cusack's [1991] approach of relating type speci�cations de�nes subtyping in termsof strengthening state invariants. However, none of these authors considers theproblems introduced by extra mutators nor the preservation of history properties.Therefore, they allow certain subtype relations that we forbid (e.g., intset could bea subtype of fat set in these approaches).The emphasis on semantics of abstract types is a prominent feature of the workby Leavens. In his Ph.D. thesis Leavens [1989] de�nes types in terms of algebras andsubtyping in terms of a simulation relation between them. His simulation relationsare a more general form of our abstraction functions. However, for most practicalpurposes, abstraction functions are adequate (compared to relations) and have theadvantage that we can freely use equality in assertions. The work by Bruce andWegner [1990] is similar; like Leavens, they base their work on algebras, but likeus, they use coercion functions with the substitution property. Leavens consideredonly immutable types. Dhara [Dhara 1992; Dhara and Leavens 1992; Leavens andDhara 1992] extends Leavens' thesis work to deal with mutable types, but rulesout the cases where extra methods cause problems; the rules are de�ned just forindividual programs that have no aliasing between objects of related types, andtherefore state changes caused by a subtype's extra methods cannot be observedthrough the supertype. Because of this restriction on aliasing they allow somesubtype relations to hold where we do not. For example, they allow mutable pairsto be a subtype of immutable pairs whereas we do not.In addition, these algebraic approaches are not constructive, i.e., they tell youwhat to look for, but not how to prove that you got it. Utting [1992] does providea constructive approach, but he bases his work in the re�nement calculus language[Morgan 1990], a formalismthat we believe is not very easy for programmers to dealwith. Utting is not concerned with preserving history properties in the presence ofextra methods and he also does not allow data re�nement between supertype andsubtype value spaces.Others have worked on the speci�cation of types and subtypes. For example,many have proposed Z as the basis of speci�cations of object types[Cusack andLai 1991; Duke and Duke 1990; Carrington, Duke, Duke, King, Rose, , and Smith1989]; Goguen and Meseguer[1987] use FOOPS; Leavens and his colleagues useLarch[Leavens 1991; Leavens and Weihl 1990; Dhara and Leavens 1992]. Thoughseveral of these researchers separate the speci�cation of an object's creators fromits other methods, none has identi�ed the problem posed by the missing creators,and thus none has provided an explicit solution to this problem.In summary, our work is similar in spirit to that of America, Meyer, and Cusack,because they take a speci�cation-based approach to de�ning a behavioral notion ofsubtyping. It complements the algebraic model-based approach taken by Leavens,Dhara, and Bruce and Wegner. Of the work that deal with mutability, none hasaddressed the need to preserve history properties. Only we have a technique thatworks in a general environment in which objects can be shared among possiblyconcurrent users.

A Behavioral Notion of Subtyping � 299. SUMMARYThis paper de�nes a new notion of the subtype relation based on the semanticproperties of the subtype and supertype. An object's type determines both a setof legal values and an interface with its environment (through calls on its meth-ods). Thus, we are interested in preserving properties about supertype values andmethods when designing a subtype. We require that a subtype preserve the be-havior of the supertype methods and also all invariant and history properties of itssupertype. We are particularly interested in an object's observable behavior (statechanges), thus motivating our focus on history properties and on mutable typesand mutators.The paper presents two ways of de�ning the subtype relation, one using con-straints and the other using the extension rule. Either of these approaches guaran-tees that subtypes preserve their supertypes' properties. Ours is the �rst work todeal with history properties, and to provide a way of determining the acceptabilityof the \extra" methods in the presence of mutability.The paper also presents a way to specify the semantic properties of types formally.One reason we chose to base our approach on Larch is that Larch allows formalproofs to be done entirely in terms of speci�cations. In fact, once the theoremscorresponding to our subtyping rules are formally stated in Larch, their proofs arealmost completely mechanical|a matter of symbol manipulation|and could bedone with the assistance of the Larch Prover[Garland and Guttag 1989].In developing our de�nitions, we were motivated primarily by pragmatics. Ourintention is to capture the intuition programmers apply when designing type hier-archies in object-oriented languages. However, intuition in the absence of precisioncan often go astray or lead to confusion. This is why it has been unclear how toorganize certain type hierarchies such as integers. Our de�nition sheds light onsuch hierarchies and helps in uncovering new designs. It also supports the kindof reasoning that is needed to ensure that programs that work correctly using thesupertype continue to work correctly with the subtype.We believe that programmers will �nd our approaches relatively easy to applyand expect them to be used primarily in an informal way. The essence of a subtyperelationship (in either of our approaches) is expressed in the mappings. We hopethat the mappings will be de�ned as part of giving type and subtype speci�cations,in much the same way that abstraction functions and representation invariants aregiven as comments in a program that implements an abstract type. The proofs canalso be done at this point; they are usually trivial and can be done by inspection.ACKNOWLEDGMENTSSpecial thanks to John Reynolds who provided perspective and insight that led usto explore alternative de�nitions of subtyping and their e�ect on our speci�cations.We thank Gary Leavens for a helpful discussion on subtyping and pointers to relatedwork. In addition, Gary, John Guttag, Greg Morrisett, Bill Weihl, Eliot Moss, AmyMoormann Zaremski, Mark Day, Sanjay Ghemawat, and Deborah Hwang gave use-ful comments on earlier versions of this paper. We thank our associate editor, JohnMitchell, and the anonymous referees for their extremely useful feedback during thereview process.

30 � B. Liskov and J. WingViews and conclusions contained in this document are those of the authors andshould not be interpreted as necessarily representing o�cial policies or endorse-ments, either expressed or implied, by the U.S. Government.REFERENCESAmerica, P. 1990. A parallel object-oriented language with inheritance and subtyping. SIG-PLAN 25, 10 (Oct.), 161{168.America, P. 1991. Designing an object-oriented programming language with behavioural sub-typing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg (Eds.), Foundationsof Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands,May/June 1990, Volume 489 of LNCS, pp. 60{90. NY: Springer-Verlag.Black, A. P., Hutchinson, N., Jul, E., Levy, H. M., and Carter, L. 1987. Distributionand abstract types in Emerald. IEEE TSE 13, 1 (Jan.), 65{76.Bruce, K. and Wegner, P. 1990. An algebraic model of subtype and inheritance. In F. Ban-cilhon and P. Buneman (Eds.), Advances in Database Programming Language, pp. 75{96.Addison-Wesley, Reading, MA.Cardelli, L. 1988. A semantics of multiple inheritance. Information and Computation 76,138{164.Carrington, D., Duke, D., Duke, R., King, P., Rose, G., , and Smith, P. 1989. Object-Z: An object oriented extension to Z. In FORTE89, International Conference on FormalDescription Techniques.Cusack, E. 1991. Inheritance in object oriented Z. In Proceedings of ECOOP '91. Springer-Verlag.Cusack, E. and Lai, M. 1991. Object-oriented speci�cation in LOTOS and Z, or my cat reallyis object-oriented! In J. W. de Bakker, W. P. de Roever, and G. Rozenberg (Eds.),Foundations of Object Oriented Languages, pp. 179{202. Springer Verlag. LNCS 489.Dahl, O.-J., Myrhaug, B., and Nygaard, K. 1970. SIMULA common base language. Tech-nical Report 22, Norwegian Computing Center, Oslo, Norway.Dhara, K. K. 1992. Subtyping among mutable types in object-oriented programming lan-guages, Iowa State University, Ames, Iowa. Master's Thesis.Dhara, K. K. and Leavens, G. T. 1992. Subtyping for mutable types in object-orientedprogramming languages. Technical Report 92-36 (Nov.), Department of Computer Science,Iowa State University, Ames, Iowa.Duke, D. and Duke, R. 1990. A history model for classes in object-Z. In Proceedings of VDM'90: VDM and Z. Springer-Verlag.Garland, S. and Guttag, J. 1989. An overview of LP, the Larch Prover. In Proceedingsof the Third International Conference on Rewriting Techniques and Applications, ChapelHill, NC, pp. 137{151. Lecture Notes in Computer Science 355.Goguen, J. A. and Meseguer, J. 1987. Unifying functional, object-oriented and relationalprogramming with logical semantics. In B. Shriver and P. Wegner (Eds.), ResearchDirections in Object Oriented Programming. MIT Press.Guttag, J. V., Horning, J. J., and Wing, J. M. 1985. The Larch family of speci�cationlanguages. IEEE Software 2, 5 (Sept.), 24{36.Halbert, D. C. and O'Brien, P. D. 1987. Using types and inheritance in object-orientedprogramming. IEEE Software 4, 5 (Sept.), 71{79.Hammer, M. and McLeod, D. 1981. A semantic database model. ACM Trans. DatabaseSystems 6, 3, 351{386.Hoare, C. 1972. Proof of correctness of data representations. Acta Informatica 1, 1, 271{281.Kapur, D. 1980. Towards a theory of abstract data types. Technical Report 237 (June), MITLCS. Ph.D. Thesis.Leavens, G. 1989. Verifying object-oriented prograsm that use subtypes. Technical Report 439(Feb.), MIT Laboratory for Computer Science. Ph.D. thesis.

A Behavioral Notion of Subtyping � 31Leavens, G. T. 1991. Modular speci�cation and veri�cation of object-oriented programs. IEEESoftware 8, 4 (July), 72{80.Leavens, G. T. and Dhara, K. K. 1992. A foundation for the model theory of abstract datatypes with mutation and aliasing (preliminary version). Technical Report 92-35 (Nov.),Department of Computer Science, Iowa State University, Ames, Iowa.Leavens, G. T. and Weihl, W. E. 1990. Reasoning about object-oriented programs that usesubtypes. In ECOOP/OOPSLA '90 Proceedings.Lipeck, U. 1992. Semantics and usage of defaults in speci�cations. In Foundations of Informa-tion Systems Speci�cation and Design. Dagstuhl Seminar 9212 Report 35.Liskov, B. 1992. Preliminary design of the Thor object-oriented database system. In Proc.of the Software Technology Conference. DARPA. Also Programming Methodology GroupMemo 74, MIT Laboratory for Computer Science, Cambridge, MA, March 1992.Liskov, B., Atkinson, R., Bloom, T.,Moss, E., Schaffert, J., Scheifler, R., and Snyder,A. 1981. CLU Reference Manual. Springer-Verlag.Liskov, B. and Guttag, J. 1985.Abstraction and Speci�cation in Program Design. MIT Press.Liskov, B. and Wing, J. 1992. Family values: A semantic notion of subtyping. TechnicalReport 562, MIT Lab. for Computer Science. Also available as CMU-CS-92-220.Maier, D. and Stein, J. 1990. Development and implementation of an object-oriented DBMS.In S. Zdonik and D. Maier (Eds.), Readings in Object-Oriented Database Systems, pp.167{185. Morgan Kaufmann.Meyer, B. 1988. Object-oriented Software Construction. Prentice Hall, New York.Morgan, C. 1990. Programming from Speci�cations. Prentice Hall.Nelson, G. 1991. Systems Programming with Modula-3. Prentice Hall.Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. 1986. An introductionto Trellis/Owl. In Proceedings of OOPSLA '86, pp. 9{16.Scheid, J. and Holtsberg, S. 1992. Ina Jo speci�cation language reference manual. TechnicalReport TM-6021/001/06 (June), Paramax Systems Corporation, A Unisys Company.Stroustrup, B. 1986. The C++ Programming Language. Addison-Wesley.Utting, M. 1992.An object-oriented re�nement calculuswith modular reasoning.Ph. D. thesis,University of New South Wales, Australia.Wing, J. M. 1983. A two-tiered approach to specifying programs. Technical Report 299 (June),MIT Laboratory for Computer Science. Ph.D. thesis.Received July 1993; revised April 1994; accepted May 1994.

